

DATASHEET

Small Form-factor Pluggable (SFP) Optical Module Cartridges (Video)

For Densité Frames, Standard NVISION 8500 Series Routers and LUMO Cards

The Small Form-factor Pluggable (SFP) optical module cartridges for video are small, hot-pluggable devices used to provide fiber connectivity to 3G/ HD/SD SDI products from either a Densité frame (they can be used with any video card that has a rear module with an "F" name suffix (i.e., HDA-193N-DRP-F), irrelevant of which Densité frame is hosting the card), standard (not hybrid) NVISION 8500 Series routers and LUMO cards. By using single-mode fiber instead of coaxial cables, these interfaces can be used over much longer distances without degrading signal quality, which is very useful when carrying 3G signals.

All SFP optical module cartridges for video that are available from Grass Valley are RoHS compliant.

CONTENTS

SFP-R-LC	. 2
Single channel optical receiver cartridge with simplex LC	
SFP-RR-LC	. 4
Dual channel optical receiver cartridge with duplex LC	
SFP-RT-S13-LC	. 6
1310 nm optical transceiver cartridge with duplex LC	

SFP-T-S13-LC	8
Single channel 1310 nm optical transmitter cartridge with simplex LC	
SFP-TT-S13S13-LC 1	0
Dual channel 1310 nm optical transmitter cartridge with duplex LC	
Global Services1	2

DATASHEET

SFP-R-LC

Single Channel Optical Receiver Cartridge with Simplex LC

Small form-factor pluggable (SFP) optical module video cartridge for Densité frames, standard NVISION 8500 Series routers and LUMO cards.

The SFP-R-LC is a single channel single mode optical receiver that supports signals up to 3 Gb/s as per SMPTE ST 259, SMPTE ST 292 and SMPTE ST 424, including SDI pathological test patterns described in SMPTE engineering guideline SMPTE EG 34 and SMPTE recommended practices SMPTE RP 178 and SMPTE RP 198.

KEY FEATURES

- SMPTE ST 297:2006 compatible
- 3G/HD/SD SDI:
- SMPTE ST 424, SMPTE ST 292
- SMPTE ST 259-ABCD compliant
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI
- Single receiver with simplex LC
- RoHS-6 compliant
- Hot pluggable

SPECIFICATIONS

Receiver Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

•	,				
Symbol	Min.	Тур.	Max.	Units	Notes
	1260	—	1620	nm	
Sen			-21	dBm	Pathological
	0			dBm	
Pa	—	—	-21	dBm	Transition: low to high
Pd	-29	—	—	dBm	Transition: high to low
	1	—	6	dB	
		-27		dB	
	550	660	850	mVp-p	AC coupled output
			135	ps	SMPTE ST 424, 20% to 80%, unfiltered
tr / tf			270	ps	SMPTE ST 292, 20% to 80%, unfiltered
			1.5	ps	SMPTE ST 259, 20% to 80%, unfiltered
V _{ol}	0		0.5	V	I _{oL} = -1.6mA, 1 TTL unit load
V _{oh}	2.5		Vcc+0.3	V	$I_{0H} = 40$ mA, 1 TTL unit load
V _{oH}	2.5		Vcc+0.3	V	
V _{ol}	0		0.5	V	
e to absolute	maximum ra	ating condition	ons for exten	ded periods ı	nay affect device reliability.
Tstg	-40		85	°C	
Tc	-20		85	°C	
Vcc	0		4	V	
			1	KV HBM	
_	5		95	% RH	Non-condensing
	Symbol Sen Pa Pd Pd tr / tf V _{0L} V _{0H} V _{0H} V _{0H} V _{0H} V _{0H} V _{0H} V _{0L} e to absolute Tstg Tc Vcc	Symbol Min. 1260 1260 Sen 0 Pa Pd -29 1 1 Pd -29 1 1 Vol 0 Tstg -40 Tc -20 Vcc 0	Symbol Min. Typ. 1260 — Sen 0 Pa — Pd -29 Pd -29 Pd -27 Image: Sign stress stres	Symbol Min. Typ. Max. 1260 — 1620 Sen -21 0 -21 Pa — -21 Pd -29 — - Pd -29 — - Pd -29 — - 1 — 6 - Pd -29 — - 1 — 6 - Vol 1 - 6 Vol 0 0.5 0 tt r/tf 2.5 Vcc+0.3 Vcc+0.3 Vol 0 0.5 0 tt obsolute maximum rating conditions for extend 35 0 Vcc	Symbol Min. Тур. Max. Units 1260 — 1620 nm Sen -21 dBm 0 -21 dBm Pa — -21 dBm Pd -29 — - dBm 1 — 6 dB dB - 550 660 850 mVp-p grave - 135 ps tr / tf 270 ps grave tr / tf 2.5 Vcc+0.3 V V _{OL} 0 0.5 V V _{OH} 2.5 Vcc+0.3 V V _{OL} 0 0.5 V V _{OL} 0 0.5 V tot 3.5 °C C

Receiver Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes					
Recommended Operating Conditions											
Power Supply Voltage	Vcc	3.13	3.3	3.47	V						
Operating Case Temperature	Tc	0		70	°C						
Baud Rate		<50		3000	Mb/s						
Power Supply Current	lcc		120	160	mA						

ORDERING

	_	Maximum	RX1		R	X2		Tomn	
Part Number	Туре	Bit Rate (Mb/s)	λ (nm)	Sen. (dBm)	λ (nm)	Sen. (dBm)	Package	(°C)	RoHS Compliant
SFP-R-LC	1-RX	3000	1260/1620	-21			LC SFP with DMI	0 to 70	Yes

Note: Only connections with patch cords with PC or UPC connectors are supported.

Note: All receiver channels (R) are wideband, responding to wavelengths ranging from 1260 to 1620 nm, compatible with standard 1310 nm and CWDM wavelengths, except for the receiver from the WDM Series.

DATASHEET

SFP-RR-LC

Dual Channel Optical Receiver Cartridge with Duplex LC

Small form-factor pluggable (SFP) optical module video cartridge for Densité frames, standard NVISION 8500 Series routers and LUMO cards.

The SFP-RR-LC is a dual channel single mode optical receiver that supports signals up to 3 Gb/s as per SMPTE ST 259, SMPTE ST 292 and SMPTE ST 424, including SDI pathological test patterns described in SMPTE engineering guideline SMPTE EG 34 and SMPTE recommended practices SMPTE RP 178 and SMPTE RP 198.

KEY FEATURES

- SMPTE ST 297:2006 compatible
- 3G/HD/SD SDI:
- SMPTE ST 424, SMPTE ST 292
- SMPTE ST 259-ABCD compliant
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI
- Dual receiver with duplex LC
- RoHS-6 compliant
- Hot pluggable

SPECIFICATIONS

Receiver Specifications ($0^{\circ}C < Tc < 70^{\circ}C$, 3.13V < Vcc < 3.47V)

	,	, , , , , ,				
Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Optical						
Wavelength of Operation		1260	—	1620	nm	
Sensitivity for SMPTE ST 424 2.97 Gb/s	Sen			-21	dBm	Pathological
Overload		0			dBm	
Signal Detect — Asserted	Ра	—	—	-21	dBm	Transition: low to high
Signal Detect — De-asserted	Pd	-29	—	—	dBm	Transition: high to low
Signal Detect — Hysteresis		1			dB	
Optical Return Loss			-27		dB	
Electrical						
CML Output (Differential)		550	660	850	mVp-p	AC coupled output
				135	ps	SMPTE ST 424, 20% to 80%, unfiltered
Optical Rise Time / Fall Time	tr / tf			270	ps	SMPTE ST 292, 20% to 80%, unfiltered
				1.5	ps	SMPTE ST 259, 20% to 80%, unfiltered
Output LOS Voltage — Low	V _{ol}	0		0.5	V	I_{oL} = -1.6mA, 1 TTL unit load
Output LOS Voltage — High	V _{OH}	2.5		Vcc+0.3	V	$I_{OH} = 40$ mA, 1 TTL unit load
AD2 192	V _{OH}	2.5		Vcc+0.3	V	
30L, 3DA	V _{ol}	0		0.5	V	
Absolute Maximum Ratings — Exposure	to absolute ı	naximum ra	ting conditio	ns for exten	ded periods	may affect device reliability
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Power Supply Voltage	Vcc	0		4	V	
ESD Tolerance on All Pins				1	KV HBM	
Relative Humidity	—	5		95	% RH	Non-condensing

Receiver Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes				
Recommended Operating Conditions										
Power Supply Voltage	Vcc	3.13	3.3	3.47	V					
Operating Case Temperature	Тс	0		70	°C					
Baud Rate		<50		3000	Mb/s					
Power Supply Current	lcc		150	200	mA					

ORDERING

	_	Maximum	R	RX1		K2		Temn	
Part Number	Туре	Bit Rate (Mb/s)	λ (nm)	Sen. (dBm)	λ (nm)	Sen. (dBm)	Package	(°C)	RoHS Compliant
SFP-RR-LC	2-RX	3000	1260/1620	-21	1260/1620	-21	LC SFP with DMI	0 to 70	Yes

Note: Only connections with patch cords with PC or UPC connectors are supported.

Note: All receiver channels (R) are wideband, responding to wavelengths ranging from 1260 to 1620 nm, compatible with standard 1310 nm and CWDM wavelengths, except for the receiver from the WDM Series.

SFP-RT-S13-LC

1310 nm Optical Transceiver Cartridge with Duplex LC

Small form-factor pluggable (SFP) optical module video cartridge for Densité frames, standard NVISION 8500 Series routers and LUMO cards.

The SFP-RT-S13-LC is a single mode optical transceiver that supports signals up to 3 Gb/s as per SMPTE ST 259, SMPTE ST 292 and SMPTE ST 424, including SDI pathological test patterns described in SMPTE engineering guideline SMPTE EG 34 and SMPTE recommended practices SMPTE RP 178 and SMPTE RP 198.

KEY FEATURES

- SMPTE ST 297:2006 compatible
- 3G/HD/SD SDI:
- SMPTE ST 424, SMPTE ST 292
- SMPTE ST 259-ABCD compliant
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI
- Single transmitter with simplex LC
- Single receiver with simplex LC
- RoHS-6 compliant
- Hot pluggable

SPECIFICATIONS

Transmitter Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Optical						
Optical Transmit Power	Ро	-5	-2	0	dBm	Output power is power coupled into a 9/125 mm single mode fiber
Output Center Wavelength	I	1290	1310	1330	nm	At 25°C
Output Spectrum Width	DI	—	1.5	3	nm	RMS (ơ)
Extinction Ratio	ER	5	7.5		dB	
Relative Intensity Noise	RIN			-120	dB/Hz	
	tr / tf			135	ps	SMPTE ST 424, 0% to 80%, unfiltered
Optical Rise Time / Fall Time				270	ps	SMPTE ST 292, 0% to 80%, unfiltered
				800	ps	SMPTE ST 344, 0% to 80%, unfiltered
				1.5	ns	SMPTE ST 259, 0% to 80%, unfiltered
Electrical						
Differential Input Voltage	$V_{\rm IH}$ - $V_{\rm IL}$	200		1200	mVp-p	AC Coupled Input
Disable Input Voltage — Low	$V_{\text{TDIS},L}$	0		0.8	V	TX Output Enabled
Disable Input Voltage — High	$V_{\text{TDIS},\text{H}}$	2.0		Vcc+0.3	V	TX Output Disabled
Output TX_Fault — Low	V _{ol}	0		0.5	V	
Disable TX_Fault — High	V _{oh}	2.5		Vcc+0.3	V	
	V _{OH}	2.5		Vcc+0.3	V	
50L, 5DA	V _{ol}	0		0.5	V	

Receiver Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes					
Optical											
Wavelength of Operation		1260	—	1620	nm						
Sensitivity for SMPTE ST 424 2.97 Gb/s	Sen			-21	dBm	Pathological					
Overload		-3			dBm						
Signal Detect — Asserted	Pa	_	_	-22	dBm	Transition: low to high					
Absolute Maximum Ratings — Exposure to absolute maximum rating conditions for extended periods may affect device reliability											
Storage Temperature	Tstg	-40		85	°C						
Operating Case Temperature	Tc	-20		85	°C						
Power Supply Voltage	Vcc	0		4	V						
ESD Tolerance on All Pins				1	KV HBM						
Relative Humidity	—	5		95	% RH	Non-condensing					
Recommended Operating Conditions											
Power Supply Voltage	Vcc	3.13	3.3	3.47	V						
Operating Case Temperature	Tc	0		70	°C						
Baud Rate		<50		3000	Mb/s						
Power Supply Current	lcc		200	300	mA						

ORDERING

Ν		Maximum	ТХ		R	Х		Tomn		
Part Number	Туре	Bit Rate (Mb/s)	λ (nm)	Power (dBm)	λ (nm)	Sen. (dBm)	Package	(°C)	RoHS Compliant	
SFP-RT-S13-LC	1-TX+1-RX	3000	1310	-5 to 0	1260/1620	-21	LC SFP with DMI	0 to 70	Yes	
Related Products			RX1		R)	(2				
SFP-RR-LC	2-RX	3000	1260/1620	-21	1260/1620	-21	LC SFP with DMI	0 to 70	Yes	
SFP-R-LC	1-RX	3000	1260/1620	-21			LC SFP with DMI	0 to 70	Yes	

Note: Only connections with patch cords with PC or UPC connectors are supported.

Note: All receiver channels (R) are wideband, responding to wavelengths ranging from 1260 to 1620 nm, compatible with standard 1310 nm and CWDM wavelengths, except for the receiver from the WDM Series.

SFP-T-S13-LC

Single Channel 1310 nm Optical Transmitter Cartridge with Simplex LC

Small form-factor pluggable (SFP) optical module video cartridge for Densité frames, standard NVISION 8500 Series routers and LUMO cards.

The SFP-T-S13-LC is a single channel single mode optical transmitter that supports signals up to 3 Gb/s as per SMPTE ST 259, SMPTE ST 292 and SMPTE ST 424, including SDI pathological test patterns described in SMPTE engineering guideline SMPTE EG 34 and SMPTE recommended practices SMPTE RP 178 and SMPTE RP 198. The unit uses a Fabry-Perot 1310 nm laser transmitter.

KEY FEATURES

- SMPTE ST 297:2006 compatible
- 3G/HD/SD SDI:
- SMPTE ST 424, SMPTE ST 292
- SMPTE ST 259-ABCD compliant
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI

DATASHEET

- Single transmitter with simplex LC
- RoHS-6 compliant
- Hot pluggable

SPECIFICATIONS

Transmitter Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

			-,			
Parameter	Symbol	Min	Тур	Max	Units	Notes
Optical						
Optical Transmit Power	Ро	-5	-2	0	dBm	Output power is power coupled into a 9/125 mm single mode fiber
Output Center Wavelength	I	1290	1310	1330	nm	At 25°C
Output Spectrum Width	DI	—	1.5	3	nm	RMS (ơ)
Extinction Ratio	ER	5	7.5		dB	
Relative Intensity Noise	RIN			-120	dB/Hz	
				135	ps	SMPTE ST 424, 20% to 80%, unfiltered
Optical Rise Time / Fall Time	tr / tf			270	ps	SMPTE ST 292, 20% to 80%, unfiltered
				1.5	ns	SMPTE ST 259, 20% to 80%, unfiltered
Electrical						
Differential Input Voltage	V _{IH} - V _{IL}	200		1200	mVp-p	AC Coupled Input
Disable Input Voltage — Low	V _{tdis,l}	0		0.8	V	TX Output Enabled
Disable Input Voltage — High	V _{tdis,h}	2.0		Vcc+0.3	V	TX Output Disabled
CCI CDA	V _{oh}	2.5		Vcc+0.3	V	
JUL, JDA	V _{ol}	0		0.5	V	
Absolute Maximum Ratings — Exposu	ire to absolu	te maximum	rating condit	ions for exter	nded periods	may affect device reliability
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Tc	-20		85	°C	
Power Supply Voltage	Vcc	0		4	V	
ESD Tolerance on All Pins				1	KV HBM	
Relative Humidity	_	5		95	% RH	non-condensing
Recommended Operating Conditions						
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Operating Case Temperature	Tc	0		70	°C	
Baud Rate		<50		3000	Mb/s	
Power Supply Current	lcc		130	180	mA	

DATASHEET

ORDERING

Part Number	Туре	Maximum Bit Rate (Mb/s)	ТХ		RX			Tomp	
			λ (nm)	Power (dBm)	λ (nm)	Sen. (dBm)	Package	(°C)	RoHS Compliant
SFP-T-S13-LC	1-TX	3000	1310	-5 to 0			LC SFP with DMI	0 to 70	Yes
Related Products									
SFP-RR-LC	2-RX	3000			1260/1620	-21	LC SFP with DMI	0 to 70	Yes
SFP-TT-S13S13-LC	2-TX	3000	1310	-5 to 0			LC SFP with DMI	0 to 70	Yes
SFP-R-LC	1-RX	3000			1260/1620	-21	LC SFP with DMI	0 to 70	Yes
SFP-RT-S13-LC	1-TX+1-RX	3000	1310	-5 to 0	1260/1620	-21	LC SFP with DMI	0 to 70	Yes

Note: Only connections with patch cords with PC or UPC connectors are supported.

SFP-TT-S13S13-LC

Dual Channel 1310 nm Optical Transmitter Cartridge with Duplex LC

Small form-factor pluggable (SFP) optical module video cartridge for Densité frames, standard NVISION 8500 Series routers and LUMO cards.

The SFP-TT-S13S13-LC is a dual channel single mode optical transmitter that supports signals up to 3 Gb/s as per SMPTE ST 259, SMPTE ST 292 and SMPTE ST 424, including SDI pathological test patterns described in SMPTE engineering guideline SMPTE EG 34 and SMPTE recommended practices SMPTE RP 178 and SMPTE RP 198. The unit includes two independent Fabry-Perot 1310 nm laser transmitters.

KEY FEATURES

- SMPTE ST 297:2006 compatible
- 3G/HD/SD SDI:
- SMPTE ST 424, SMPTE ST 292
- SMPTE ST 259-ABCD compliant
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI
- Dual transmitter with duplex LC
- RoHS-6 compliant
- Hot pluggable

SPECIFICATIONS

Transmitter Specifications ($0^{\circ}C < Tc < 70^{\circ}C$, 3.13V < Vcc < 3.47V)

Parameter	Symbol Min. Typ.		Max.	Units	Notes			
Optical								
Optical Transmit Power	Ро	-5	-2	0	dBm	Output power is power coupled into a 9/125 mm single mode fiber		
Output Center Wavelength	I	1290	1310	1330	nm	At 25°C		
Output Spectrum Width	DI		1.5	3	nm	RMS (ơ)		
Extinction Ratio	ER	5	7.5		dB			
Relative Intensity Noise	RIN			-120	dB/Hz			
				135	ps	SMPTE ST 424, 20% to 80%, unfiltered		
Optical Rise Time / Fall Time	tr / tf			270	ps	SMPTE ST 292, 20% to 80%, unfiltered		
				1.5	ns	SMPTE ST 259, 20% to 80%, unfiltered		
Electrical								
Differential Input Voltage	V _{IH} - V _{IL}	200		1200	mVp-p	AC Coupled Input		
Disable Input Voltage — Low	$V_{\text{TDIS,L}}$	0		0.8	V	TX Output Enabled		
Disable Input Voltage — High	V _{tdis,h}	2.0		Vcc+0.3	V	TX Output Disabled		
SCI SDA	V _{OH}	2.5		Vcc+0.3	V			
	V _{ol}	0		0.5	V			
Absolute Maximum Ratings — Exposu	ire to absolut	e maximum r	ating condition	ons for exten	ded periods n	nay affect device reliability		
Storage Temperature	Tstg	-40		85	°C			
Operating Case Temperature	Тс	-20		85	°C			
Power Supply Voltage	Vcc	0		4	V			
ESD Tolerance on All Pins				1	KV HBM			
Relative Humidity	—	5		95	% RH	Non-condensing		

Transmitter Specifications (0°C < Tc < 70°C, 3.13V < Vcc < 3.47V)

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes				
Recommended Operating Conditions										
Power Supply Voltage	Vcc	3.13	3.3	3.47	V					
Operating Case Temperature	Tc	0		70	°C					
Baud Rate		<50		3000	Mb/s					
Power Supply Current	lcc		200	300	mA					

ORDERING

Part Number	Туре	Maximum Bit Rate (Mb/s)	ТХ		RX			Tomp			
			λ (nm)	Power (dBm)	λ (nm)	Sen. (dBm)	Package	(°C)	RoHS Compliant		
SFP-TT-S13S13-LC	2-TX	3000	1310	-5 to 0			LC SFP with DMI	0 to 70	Yes		
Related Products											
SFP-RR-LC	2-RX	3000			1260/1620	-21	LC SFP with DMI	0 to 70	Yes		
SFP-T-S13-LC	1-TX	3000	1310	-5 to 0			LC SFP with DMI	0 to 70	Yes		
SFP-R-LC	1-RX	3000			1260/1620	-21	LC SFP with DMI	0 to 70	Yes		
SFP-RT-S13-LC	1-TX+1-RX	3000	1310	-5 to 0	1260/1620	-21	LC SFP with DMI	0 to 70	Yes		

Note: Only connections with patch cords with PC or UPC connectors are supported.

GLOBAL SERVICES

In a world of ever-increasing complexity and system distribution, broadcast producers inside a studio or outside in a vehicle need production control equipment suppliers who can provide industry-leading technical support. Personnel is but one part of the support equation. The other is a business infrastructure capable of deploying and cost-effectively supporting reliable solutions. Grass Valley Global Services has the depth of knowledge, industry experience and technical expertise to achieve this objective. The Global Services portfolio provides everything necessary insure maximum uptime and high velocity problem resolution.

Grass Valley Global Services delivers a comprehensive array of tangible value:

- · A global network of field engineers with the experience, knowledge and skill to keep production switchers/vision mixers and associated equipment up to date, operational and optimized
- · A worldwide parts distribution system that ensures rapid access to replacement parts
- · A team of educators skilled in the nuances of production control and switcher operations
- Technical and operational training, provided on-site at Grass Valley facilities worldwide and online, that maximizes productivity through tailored learning paths
- · Comprehensive support agreements that ensure every Grass Valley system remains in peak condition - all while supporting the enterprise's need for financial predictability

Grass Valley Global Services offerings deliver tangible value. The Global Services organization does this by providing the resources to ensure that users get the maximum value from an investment in Grass Valley production switchers - from initial startup through the entire in-service lifespan. Global Services empowers users to meet tactical day-to-day objectives while giving staff more time to focus on strategic business initiatives. A global presence, logistics expertise and world-renowned team of media professionals are here to help the achievement of financial performance objectives by reducing risk while boosting operational efficiencies.

GLOBAL SERVICES PROVIDES:

- · Unequalled depth of industry knowledge and technical expertise
- Over 50 years of worldwide experience
- Complete set of services:
- Strategic advice
- System architecture
- Workflow analysis and design
- Project management
- Integration and implementation - Performance optimization
- Technical and operational training - Educational services
- Address today's challenges and prepare for tomorrow's opportunities

WWW.GRASSVALLEY.COM

Join the Conversation at GrassValleyLive on Facebook, Twitter, YouTube and Grass Valley on LinkedIn.

www.grassvalley.com/blog

This product may be protected by one or more patents. For further information, please visit: www.grassvalley.com/patents. Grass Valley®, GV® and the Grass Valley logo are trademarks or registered trademarks of Grass Valley USA, LLC, or its affiliated companies in the United States and other jurisdictions. Grass Valley products listed above are trademarks or registered trademarks of Grass Valley USA. LLC or its affiliated companies, and other parties may also have trademark rights in other terms used herein. Copyright © 2017, 2020 Grass Valley Canada. All rights reserved. Specifications subject to change without notice.