@ grass valley

A BELDEN BRAND

ORBIT MAPVIEW

CUSTOMIZABLE SCREEN CONTROL AND MONITORING

User Manual

Issue 1 Revision 3

18 May 2020

www.grassvalley.com

Patent Information

Patent Information

This product may be protected by one or more patents.

For further information, please visit: www.grassvalley.com/patents/

Copyright and Trademark Notice

Copyright © 2020, Grass Valley Canada. All rights reserved.

Belden, Belden Sending All The Right Signals, and the Belden logo are trademarks or registered
trademarks of Belden Inc. or its affiliated companies in the United States and other
jurisdictions. Grass Valley, Orbit and Orbit MapView are trademarks or registered trademarks of
Grass Valley Canada. Belden Inc., Grass Valley Canada, and other parties may also have
trademark rights in other terms used herein.

Terms and Conditions

Please read the following terms and conditions carefully. By using Orbit MapView
documentation, you agree to the following terms and conditions.

Grass Valley hereby grants permission and license to owners of Orbit MapViews to use their
product manuals for their own internal business use. Manuals for Grass Valley products may not
be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, for any purpose unless specifically authorized in writing by Grass
Valley.

A Grass Valley manual may have been revised to reflect changes made to the product during its
manufacturing life. Thus, different versions of a manual may exist for any given product. Care
should be taken to ensure that one obtains the proper manual version for a specific product
serial number.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Grass Valley.

Warranty information is available from the Legal Terms and Conditions section of Grass Valley's
website (www.grassvalley.com).

About this Manual
Title Orbit MapView User Manual Issue 1 Revision 3
Revision 2020-05-18, 12:29

This Orbit MapView User Manual describes how to use the Grass Valley Orbit software for Grass
Valley MapView control and monitoring applications.

General information about Orbit is found in the’Orbit - Introduction User Manual’, and
general information about Orbit graphical tools is in the ‘Orbit for Multiviewers User Manual.

Table 1 Related Documents

Type Title Description

General introduction to the Orbit software and description of common

User Manual: Orbit - Introduction . .
main menu items etc.

User Manual: Orbit for Multiviewers Multiviewer-specific features of Orbit.

User Manual: Orbit Services Describes Orbit services.

User Manual: Orbit Router Control Panel |Describes the Bulk Routing Panel openable from Orbit.

www.grassvalley.com/patents/
www.grassvalley.com
www.grassvalley.com

Table of Contents

Patent Informationot e ii
Copyright and Trademark NOtiCe.ovi it e i
Terms and ConditioNsttt e e e e e ii
About this Manual. e e e e ii

Product OVervieW.coeeeeeeoseeesccesscecssccssscesssl

L0 o [T 0o Yo 1= 3 2
SO tWArE VISION ..ttt e e e e e e e e 2
This DOCUMENT ...ttt ettt e e e e e e e e et e eieienas 2
CoNEENT SUMMAIY . .ot e e et e e 2
Useful BOOKMAIKSttt et ens 3
SYSEEM OVEIVIEW . . ettt ettt ettt ettt e e et e e ieaeenenes 4
Orbit MapView Project.ttt et e e et 5
Screen Hierarchy . ..o e e e 5
SCrEEN LOGIC ettt e e 6
O DIt SBIVICES ittt e e e e e e e e 7
Orbit MoNitoring SErVICe.t e e et 7
MapView Service e 7
ROULING SerVICe. . ..ot e e 8
Densité CoNtrol SEIVICE . ..ottt e e e e 8
EMail ServiCe . .o e 8
ReCOrding SEIVICE . vttt e e e e 8
R Y TU] el o o) 8
P 8
Other Source Control SYSteMS i i e 8

MapView Home Screen.......cccieeeieecnececsccecsnenessd

Initial Orbit HOmMe SCreen ..o e e i 10
Orbit CRIM ProjJects ... vv vttt ettt et aeeaes 10
C&M Project HOmMe SCreen . ..ottt et ettt i i i aeens 12
Main Menu Bar HemMSt e 13

NETWOIK VI BW .ot i e e e e e e e et e et e 21
S0 e 1= 3 A 21
USer FOler. .ot e e e e 22
User Folder RollCall Address and iControl/Densité Devices.................... 24

Accessing Device Control SCreens. ..o in e e 25
RollCall-Enabled Device Control Screencovviiiiiiiiiiiiii i 25
iControl/Densité Device Control ScreenPanel 26

Device Details . ..ot e 28

Alarm Masking e 29
Tagged Masking.o.ouinin i e 29
iControl Alarms in Network View i 31
iControl Alarm States and State Value0to 100...........ccoviiiiii ... 31
iControl Alarm Acknowledgingooiiiiii i 31

Design, Test and RUN . ..ottt e eaans 32
Orbit Design Modeand RunModeoiiiiiiiiiiiiii e iiineaenns 32

Table of Contents

DeSIgNING . . et e 33
=51 4T P 33
RUNNING. . e e e e e 34
Users, Roles and Permission.ot e 35
CUStOM PerMISSIONS .« .ottt it ettt et eeinaes 36
Permission Widget Properties.ouviiiiiiiniiiii i 36
TS ettt e e 38
Create a T NemME. .o e 38
Setas CUITENt ThEME . ..ot e e e e 39

Working with Widgetscccieviiiericenneeness .41

Widget Propertiesand Value. ... e 42
Properties and the Property Bindingcoiviiiiiniiininiiiiiniinenen, 42
Value and the Direct Binding.covuiiiiiiiii e 43

Using Behaviours and Bindings ..ot 44
Stabilized Value e 44
Non-Stabilized Valueso e 45

SettingUpaTestBench.o e 46
Pie Chart Widgetc.ouiiii e e 47
CreateaTestBench Screenot 48
Calculate an Intermediate DataValue oo iiiii it 50
Bind ‘Widget Under Test' to Stimulus Values...............cooviiiiiiiii i, 53
Exercise the ‘Widget Under Test’ with TestBench................coooiiiia.n. 56

Extend Widget Functionality with Behaviours and Bindings....................... 58
Adding Extra Functionality............cooiiiiiii e 58
Exercising the Extra Functionalitycooo i 61

Monitoring by EXCeption.t e 62
Monitoring by Exception (MbyE) Widgetcccoiiiiiiiiiiiiiiini i, 62
Configuration Dialog of the MbyEWidgetcoviviiiiiiiiininian.. 66
Monitoring by Exception Example ...t 68

Auto-Fill Property Values.t e 69
Auto-Fill Example 1: Set a Single Property across Multiple Widgets 69
Format Syntaxof aStringValue ... 71
Auto-Fill Example 2: Set Multiple Variables on a Single Widget/Component ... 72

Viewing Log Messages (Alarm List Widget) ... 75
INtrodUCtION. . ..o e 75
Alarm List Widget ..o e 76
Using an Alarm List Widget in Orbit MapView ..ot 76
Alarm List Widget Featuresoovuiiiiiiiii ittt ciiae e 79

Componentsand Variables..........cccciivieeeeeee...83

The CoMPONENt ..t e e e e et ettt 84
Creating a New ComMPONeNtottt it i e eneanans 84
Using a Component on aSCreenuvu ittt iei i ieaeeens 85

Variables in Orbit e 86
CreateaVariable e e 86
Create a Variable from a Property Value ..., 86
View Variables/Set Variable Values ...t 88
Use a Variableina PropertyValue.........coiiiiiiiiiiii i 88
Enter a Variable Directly intoa StringValue..............coooiiiiiiiiiiiatL, 20

Placing Functionality Inside a Component...........cccoviiiiiiiiiiiiiiiiinnnnan. 91
Create New ComPONeNtottt e aeenes 92
Connect Widget-Level Bindings to Component Variables 93
Exercise the Component.ttt i 103

Using Component Variableso i i 105

Orbit MapView
User Manual

Linking Component Variables to Widget Property Values 105
Setting Component Property Values at Screen-Level......................... 107
Component with Multiple Variables ... 108
Creating New Componentot e eeieeens 108
Creating Multiple Component Variables. ..ottt 108
Linking Component Variables to Widget Properties.................coeunt 110
Using a Component with Multiple Variablescooiiiit 112
Binding to Component BehaviourValues..............cocoiiiiiiiiiiiiiiiinnen.. 114
Example - Controlling Component Visibility ...t 114
Using the ComponentonaScreen.........c.ooviiiiiiiiiiii i iiiananns 119

Bindingscoiiiiiiiiiiiiiiiciiinetccsccsccnnceneases123

DireCt BiNdiNg .. oottt e 124
Property Bindingoouiniii i e e 126
Event Binding . ..covini i e e 128
Behaviour ArgUMENTS ...ttt e e e e e s 132
StriNg Op BiNdiNg ... ve e 133
Math Binding. . ..o e 141
Mapped BiNding.ocnenit i e 142
Logical Bindingcooiiinii i e e e 143
Combine BiNdingoiiiii i e e e 145

Behaviours.....cociieiieeeeeeeeeeeeccccccencenenneesal147

Local Timer Behaviouro e e e 148
Behaviour ArgumENntsottt e e e e e 149
Alarm BeNaVIOUr. ..o e 150
Alarm Configuration Dialog.oovuniii e 152
Alarm Acknowledge Behaviouro 155
Alarm Mask BEhavioUr e e e 156
Reset Latch Behaviour e et 158
Log Field BEhaviouro e 159
#Hash Field# Syntaxouvrviii e 164
<ANgle-Bracket> SYNtaXouviir i e 166
GSM BENAVIOUIS . ..ot e e e e e e 168
GSM Alarm Behaviour ... e 168
GSM Text BEhaviouro e e e 169
GSM Mask BEhaviour 169
SNIMP BENAVIOUIS. . oottt et e e e e e e 171
SNMP Get BEhaVioUr.t e e e 171
SNMP Set BEhavioUr. e e 172
LiNK BENAVIOUN .. ettt i e e e e e e 174
INErOdUCHION. .o i e e e e e e 174
State Information.t e 174
LiNK S ate ot 175
Link Behaviour and Propertiesc.ouiiiiiiiiii it eiiaanns 176
Create a Link Between TWO SCreensvvv vt cee i 177
Link BehaviourValue . ..o e i 178
Command LINe@ BENAVIOUNot e e e 178
ArQUM NS . .ottt e e e e i 179
LOCK BENAVIOUL . .ot i e e e e e e 181
ATGUMIENES . .ottt et et 181
PINg BEaVIOUN e e e 182

Table of Contents

Vi

7 Examples withBindings........cccoeeeieeneceeeenees..183

Example - Direct Binding with a SliderWidgetcooiiiiiiiiinen., 184
Create SCrEeN . et 184
Exercise the Slider Example e 185
Add aFurtherSlidero e 186

Example - Property Binding and Tally Lamp Widget..........................o.L. 189
Create SCrEeN . ettt e 189
Exercise the Exampleooinii i e 191

Example - String Op Binding and Math Binding...................cooiiiiinae. 193
Step 1: Get Datafrom Device.ooviiiiiii i i e 194
Step 2: Extract the Textual Information (String Op Binding) 195
Step 3: Determine a Divisor (Mapped Binding).........c.covviiiiiiinininan... 196
Step 4: Convert the Data Rate Value to Gbits/sec (Math Binding) 197
Exercise the EXample e 198

Example - Logical Binding and Simulated GPlor Alarm State 201
Build the Example e e e 201
Exercise the Logical BIndingcovvuiiiiii it 206
Controlling Border Color.o.uuin it e 208

Example - Event Binding and ‘Taking’ aSliderValue.............................. 211
Build the Example . ..o e 211
Exercise the Event Binding ..o i 214

Example - Button Click Increments aValuebyOne...............cooiiiiiiiat, 215
Buildthe Exampleouii i e e 215
Exercise the EXample e 217

Example - Forming a Text String for a Command Line Behaviour 218
Buildthe Exampleoiii i e 218
Adding sSOME DEDUG ..ottt e 222
Exercise the EXamplet e e 223

Binding EXecution Order.ovuiniit i e e e 225
Bindings Controlling a BehaviourValue ...t 225
Determining Binding Execution Order..........c.coviiiii i, 225
Exercisingthe Examplet 228

Examples with Behavioursccoiiiieeieeneese..229

Example - Read a Device'sLogField........ocoiiiiiiiiiiiii e 230
Log Field Source Datacovvuiiiit i i e 230
ReadaLog Field.oovuiniiii i i e e e 231
Using the #Hash Field# Syntaxcooiiiii i 232

Example-WritetoaLog Field........ oot 234
WritetoaLog Field. 234

Example - Linking from One Screento Another............cooiviiiiiiiiiinon..,. 237
Overall Screen Hierarchy and Home Screen........coovviiiniiinninineen... 237
Link Behaviour with Button Widget Exampleccoiiiiiiiiiiinn.... 237
Drag-Drop LinkMethod ... i 242

Example - Screen Link States and Screen Re-Use with Variable Files............... 243
INtrOdUCHION. ..o e 243
Preliminariest e 244
Create the Project, a Top Level Screen and Set the Home Screen 245
Build a Banner Componentttt e 245
Build a Device Information Screen (Low-Level)............cccoiiiiiiiiiiat, 247
Build Two Rack Screens (Mid-level)..........ccooiiiiiiiiii i 247
Build the Top Level Screen...... ..ot 252
Restart Orbit MapView Serviceocoeiiiiiiii e 255
Quick Check of Orbit MapView Project ..o 257
Exercise the EXampleo et e 258

Orbit MapView
User Manual

Renaming Virtual Nodes in Network Viewcooiiiiiiiiiiiiiiiiinnn, 263
Example - ‘Control with Take’ for a Manual HCO Switch-Over..................... 264
INtrodUCtioN. . ..ot e 264
Preliminaries e 264
Configure Radio BUtEONS.o oot 269
Configure Pre-select for TAKEBUttON.cooviiiiii e 270
Display the TAKE Timeout onthe ButtonFacecoiiiat.. 278

9 Server-side ProcessingExamplesccc0000000...281

Orbit Global Files for Server-Side Processing..........cocoviiiiiiiiiiiiiiinin... 282
On Orbit MapView Screens (Client-Side Processing).............ccovvvivinn. 282
Server-Side Processing with Orbit MapView Projects......................... 282

Example - Simple Global File for Server-Side Processing...............coovvun... 283
Orbit MapView Preliminaries.ccooiiiiiiiiiii i i e 283
Buildthe Globalx Fileo e 283
Build a MapView Screen File 286
Configure Orbit SErVICesvvui e e e 288
Exercise the Globalx Exampleo 289

Example - Monitoring by Exception ... 291
Build the Lower-Level SCreens ... 291
Top-LeVel SCreen .. o e 293
Exercise the EXampleoeiiiii i e e 299

Example - Monitoring the Rate of ChangeofaValue......................... ... 302
Configuring the Orbit Monitoring Servicec.ooviviiiiiiiiiiininen.n. 302
Monitoring Rate of Change with MapView...............cccoviiiiiiiiinnen.. 305

Example - ‘Network View’ User Folder and Virtual Alarms 307
Preparea UserFolder.o e et 307
Exercise the User Folderouiiiiniin it 309
Masking Alarms from the Network View Panecoooiiiviinn.., 311
INVerting Alarms.ot e 312
Filtering Alarmso e 313

TOCUStOM LOQGIC. . cvveviereeeeccnecsesssccscssssascaness315

Introduction to CUStOM LOGIC vuen it e e eeenes 316
Custom LogiC File. . ..o e e e e 317
Create LogiC File. ...t e e e e e 317
Configure Custom Logic File Input(s)andan Output......................... 318
Example - Custom Text Processing (Trim Text, Convert to UPPERCASE) 320
Preliminarieso e 320
Build the Custom Logic File........cooiuiiiiiiii e 320
Using Custom LOgiC 0N @ SCreeN ..o .vi vttt e i e e eneenns 322
Exercising the CUstom LOGiCovtir i e eeaes 324
Example - Pass Variables to Custom Logic (Prefix a Text String) 325
Prepare a Custom Logic File with Variablescooooiiiiiiiit 325
Using a Custom Logic File with Variables ...t 327
Exercise the Custom Logic File with Variables.......................oooiilt 328
Other CUSTOM LOGIC ..ttt ettt e et e ettt e e e 330
Custom Logic with No ‘Output’ ...t 330
Custom Logicwith No Input ... e 330
Custom Logic with No Inputsand No Qutput...........cocviiiiiiiiinenen... 330

11 Channel Monitoring Example...........cce00ieeveeee...331

Introduction to Example MapView Project...........ooiiiiiiiiiiiiiiiiiiiaaan, 332
ol (<=3 - AP 332

vii

Table of Contents

viii

Screens Hierarchyo.oiii i e e e 333
TOP LeVEI SCrEEN . i e e e 334
Channel View SCreen ... vttt ettt et et 335

Animated Play-Out Chainot i e e 336
Engineering Information Screens.ooviiiiiiii i e 339

RACKS SCrEEN ..ttt e e e 339

RaCK DeVICES SCIEEN . ettt e e e et e 340

Device Status Information Screen ..ot 341
L0 o7=] - o o 1P 342

TP LBVl e e 342

Channel VieW e e e e e 343

Appendix A Design Tips and Shortcuts....................345

DeSIgN TIPS . . e ettt e 346
Design Structure ... i e 346
Manage Access CoNtrol. oo i e e 346
Project Structure e 346
NAMING .« e e e e e 346
Variables e 346
Variable File o e 347
(@00 3700] 07T 01 7S 347
CUSEOM LOGIC ottt e e e e et e e e e e e e 347
EXOICiSING ..t 347
37T 11 T P 349

DESIgN SNOITCULS .o\ttt ettt e e e e e e e e e e 350
Curly Bracket {3 Syntax ..ot e 350
Hash Field ## Syntaxoovvuii i e e e 350
Angle Bracket < > SyntaXo.iiiiiiiii i e 350
Copy a Device Address to Clipboard. ..o, 350
Copy aDevice Parameters ...t 350
Copy a Device Log Field to Clipboardc.coiiiiiiiiiiiiiiiiin ... 351
Drag/Drop Device onto Tally Lamp Widget..........cooviiiiiiiiiiiiiiiat. 351
Drag/Drop Device onto Label Widget ... 353

Shortcut Keystrokesuiit e e e e e e 354

Appendix B List of Behaviours and Bindings...............355

BiNAiNgS .ottt e e e 356
BEaVIOUIS ..ot 357

Appendix C Troubleshooting...........cccivveeveeeene...359

Troubleshooting.t e 359
Information to Provide.t e 359
Crash DUMP Files. ..o e 360
KN OWN ISSUES. .\ttt ittt et ettt e ettt ettt eaieens 360

(@0) = Tt 1 U L R 1 - X |

1 Product Overview

Orbit is a configuration, control and monitoring system from Grass Valley, a Belden brand.

Orbit MapView provides customizable, fully-featured, scalable control and monitoring screens
for Grass Valley and for third-party devices. This allows multiple channels with large amounts of
status information to be observed, including monitoring by exception. Control, monitoring
and status screens can be viewed on standard client computer display monitors and also on
Grass Valley multiviewer video walls. Graphical custom tiles can be created to filter and monitor
status and alarms from devices. Custom screens can be displayed, or actions can be triggered,
by the status of one or more devices and device status parameters.

Orbit Channel Monitor

Channel View

Channel 1

PLAYOUT

Fig. 1-1: Orbit MapView

Product Overview

Order Codes
Order Codes

Table 1-1 Orbit MapView Order Codes

Order Code Description

Orbit Orbit application.

Licenses: (For license installation instructions,

see the Orbit Introduction User Manual.)
FGAN MAPVIEW License for using Orbit for MapView applications in run mode.

Software Version

The Orbit MapView functionality described in this document is for Orbit MapView using the
following version of the Orbit client application and Orbit Services:

Orbit 3.1 or later

This Document

This user manual presents some Orbit MapView information and examples of using Orbit
MapView.

Content Summary

« Further Orbit MapView product information,
see System Overview, on page 4, onwards.

+ Orbit MapView home screen,
see Chapter 2 MapView Home Screen, on page 9, onwards.

+ Elements of Orbit MapView screens,
see Chapter 3 Working with Widgets, on page 41; and
see Chapter 4 Components and Variables, on page 83.

+ Introduction to some Behaviours and Bindings used in examples in this document,
see Chapter 5 Bindings, on page 123; and
see Chapter 6 Behaviours, on page 147.

+ Some examples using Behaviours and Bindings,
see Chapter 7 Examples with Bindings, on page 183; and
see Chapter 8 Examples with Behaviours, on page 229.

+ Some examples using Server-side processing,
see Chapter 9 Server-side Processing Examples, on page 281.

+ Custom logic definition,
see Chapter 10 Custom Logic, on page 315.

- Presentation of a channel monitoring example,
see Chapter 11 Channel Monitoring Example, on page 331.

+ And finally, appendices:
see Design Tips and Shortcuts, on page 345; and
see List of Behaviours and Bindings, on page 355; and
see Troubleshooting, on page 359;

Orbit MapView
User Manual

Useful Bookmarks

Other useful bookmarks within the document:

A Behaviour, on page 6, and A Binding, on page 6.

Accessing Device Control Screens, on page 25.

Widget Properties and Value, on page 42.

Setting Up a Test Bench, on page 46.

Monitoring by Exception, on page 62.

Format Syntax of a String Value, on page 71.

Viewing Log Messages (Alarm List Widget), on page 75.

Variables in Orbit, on page 86.

Connect Widget-Level Bindings to Component Variables, on page 93.
Behaviour Arguments, on page 149.

Alarm Behaviour, on page 150.

Log Field Behaviour, on page 159.

#Hash Field# Syntax, on page 164, and <Angle-Bracket> Syntax, on page 166.
Link Behaviour, on page 174.

Binding Execution Order, on page 225.

Example - Screen Link States and Screen Re-Use with Variable Files, on page 243.

Orbit Global Files for Server-Side Processing, on page 282.

Note: For general information on graphical entry in Orbit, refer to the
‘Orbit for Multiviewers' user manual, where Orbit schematic editor,
Theme editor, Behaviours/Bindings, and managing users are described.

Product Overview
System Overview

System Overview

Orbit MapView runs on a client computer. MapView screens can form a soft user panel for
monitoring various status items of many devices. A MapView screen can monitor one or more
Grass Valley, or third party, devices, cards, modules or units: Additionally, it can connect to
server-based services which provide overall system status information, services and virtual
alarms. Figure 1-2 shows an outline of a general system view for Orbit MapView.

Modular cards, Units, Third party devices...

Status messages (RollCall, RollCall+, Densite)

\\ [/ E.g.
/iControI Densité Manager,

1
Logging Interface to iControl GSM’ .
Bevices RollCall Middleware Services.
Log Server.
4
Orbit Services

\Qﬂessages

Orbit MapView displays alarm state and
device status to the user with Orbit
MapView screens.

Orbit Map
| Client

Fig. 1-2: System Diagram with Orbit MapView

Devices in a system send log messages. (For example, RollCall-enabled devices send log
messages with a ‘LOG_HEADER=Value’form, known as Log Fields.) Log information may be
informative, or may carry alarm information which needs to be highlighted on a monitoring
screen.

‘Raw’log information is sent to a device logging interface which is usually a service running on
a server (for example, an iControl Densité Manager). In turn, status messages are sent to Orbit
Services (for example, Orbit Monitoring Service, OMS). Aggregate status and alarm messages
are published, which an Orbit MapView client can subscribe to (via an Orbit Alarm Behaviour).

Note: In a system, the RollCall domain should match across:
+ Logging Service
+ Orbit Service(s)
+ Orbit MapView Client.
And each item must have a unique RollCall address.

Orbit MapView
User Manual

Orbit MapView Project

Screen Hierarchy

An Orbit MapView project defines a soft control and monitoring panel comprising various
linked graphical screens for control and monitoring applications. A project may contain a
hierarchy of screens. See the example hierarchy of Figure 1-3.

Top-Level screen

Rack-Level screen

Device-Level
screens

Fig. 1-3: Example Orbit MapView Screen Hierarchy

Widgets are graphical items on screens with properties that change the widget's appearance,
for example, font size, flashing border, text label, color or transparency. The behavior of a
widget is how its appearance changes according to various conditions; this is defined with
Orbit ‘Behaviours’ and ‘Bindings’.

Product Overview
Orbit MapView Project

Screen Logic

Screens contain graphical widgets such as video tiles, audio bars, tally lamps, status indicators,
buttons, check boxes, slider bars, clocks, text labels etc. Control/indicator widgets typically
interact with device status information and device control interfaces for their
control/monitoring function.

A user may define widget interactions and behavior.
For example, a button click to acknowledge an alarm message and cancel an on-screen
warning or error indicator.

The interaction logic (between the widget, external device(s) and any other widgets etc.)
happens ‘behind-the-scenes’and is defined via the screen schematic. (See Figure 1-4.)
The required ‘behind-the-scenes’ logic can be defined in Orbit on a screen using
interconnected Orbit ‘Behaviours’and ‘Bindings'.

External device

Orbit MapView screen extract Click

. 3000:DE:34 Video Router

Alarm state: 3000:DE:34, Temperature WARNING: 40 degrees Celsius

Example ‘Behind-the-scenes’ interaction logic.
The status of some external device is monitored and,
if the external device indicates a warning or failure, then:

1 alampilluminates yellow (or red) on-screen, to indicate a warning (or failure); and
following nay remedial action by the user,

2 auser clicks a button to acknowledge the alarm, changing the lamp color green.

3 The external device subsequently reports an OK status after any warning/failure
condition is cleared.

4 The OK condition is reflected on-screen.

Fig. 1-4: Simple ‘Behind-the-Scenes’ Interaction Logic Example

A Behaviour

An Orbit ‘Behaviour’ gets, puts or holds data. It can get information from or pass information to
the outside world or to a widget property via an Orbit ‘Binding

A Binding

A ‘Binding’ processes data. It connects a Behaviour to a widget or to another Behaviour.
Typically, it binds an output of a Behaviour to a widget property.

Orbit MapView Behaviours and Bindings are listed in Appendix B List of Behaviours and
Bindings, on page 355.

Orbit MapView
User Manual

Orbit Services

Orbit Services run on a server computer as (Windows) services. They are installed on a server
computer as an option when installing Orbit, see Figure 1-5.

[setup - Orbit ey
Grass Valley Orbit Installer ‘
B setup - Orbit ey

Orbit Backend Services
Install the Orbit backend services?
n

These services are not needed to run the Orbit dient, they provide Monitoring
Service Map View Service for use in a Control and Monitoring installation.

stall Orbit Services

< Back][MNext =][Cancel

Fig. 1-5: Install Orbit Services

Orbit monitoring services installed include:
+ Monitoring Service
+ MapView Service.
+ Routing Service.
+ Email Service.
+ Recording Service.

Orbit Monitoring Service

The primary purpose for the Orbit Monitoring Service (OMS) is to calculate key state
information from Log Fields generated from log information from cards or units in a system.
OMS uses Log Field data from a Grass Valley Log Server (a Windows service and part of the
Grass Valley RollCall Middleware Services) and OMS may also process raw log data from
cards/units (i.e. any device in its ‘control and monitoring’RollCall domain). OMS then publishes
the calculated state data in Alarm Messages to subscribers. Orbit MapView can subscribe to
these Alarm Messages and Alarm state information can be used on a MapView screen with
Alarm Behaviours.

Orbit MapView may also write log data to the ‘control and monitoring’ RollCall domain. This
data will be processed by OMS.

MapView Service

The MapView service runs on a server and executes the same Orbit MapView project in parallel
with the client.

The service evaluates the alarm state of all MapView screens and then publishes overall project
‘state’information to the client. This enables any MapView screen Link icons to actively indicate
the overall state of the screen they link to (for example, a Link icon may have a flashing red
border to indicate an error state in the linked-to screen).

Product Overview
Source Control

The Orbit MapView service handles any GSM alarms.

The Orbit MapView service also executes (server-side) logic contained in any special files within
the project.

A GIT repository may be used to hold Orbit projects. This can ensure the Orbit MapView service
uses the same Orbit MapView project as is running on an Orbit MapView client.

Routing Service

The Routing service interfaces between Orbit soft control panels and a Router Controller
device using RollCall Multi-Matrix or SWP-P-08 protocols.

Densité Control Service

The Densité Control service allows Orbit to set/view multicast parameters of Densité cards.
Note that a restart will be required for changes to take effect.

Email Service

The Email service sends emails on the behalf of Orbit via a configured SMTP server.

Recording Service

The Recording service captures and stores a copy of all log message or alarm changes within a
system, allowing historical events to be viewed and investigated. The service listens to system
messages. A main log file is used to record everything. Additionally, smaller, filtered log files
can record a smaller subset of data within the system.

Source Control

Orbit projects may be stored in normal file folders or under source control, which is better.
Reasons for using source control:

+ maintain a backup of changes;
- ability to rollback to a known good working copy; and
- easier sharing of Orbit projects between multiple system engineers.

Git
Orbit can use any Git server to store and share Orbit projects, and this functionality is
integrated directly into the Orbit client software via the ‘Push’and ‘Pull’ tool bar buttons.

The Orbit MapView Service can be configured to automatically pull changes from Git. This
avoids copying around different versions of the project.

Other Source Control Systems

Other source control systems, for example SVN, are not integrated with Orbit but may still be
used to hold projects and versions of a project. In this case, exclude the project’s “git’ folder
from the source control system. (The ‘git’ folder is found at the top level of the project and will
be re-created each time Orbit opens/re-opens the project if it is missing.)

2 MapView Home Screen

Summary

MapView Home Screen

INTtIA] OFDIt HOME SCIEON ..u.oeeeeeeererrevreeserierssrsssessessessssssssssessessessssssssesssssssssssessssassassassesaes
Orbit CEM PrOJECES. . .o e v ettt et et ettt et e et et e et in e ieeans
C&M Project HOme SCreen.c.e et et
Main MenU BaArItemsonenu ettt ettt ee e iiaenans

Network View
o) =13
0 LY =T g o] o =)
User Folder RollCall Address and iControl/Densité Devicescccovvuun..

Accessing Device Control Screens
RollCall-Enabled Device Control SCreenuueueininiieniianniennnnnns
iControl/Densité Device Control ScreenPanelc.ccoouiiiiiiiiiniinnn...

DOVICE DOLQIIS cauuveeeereerereesreriersersrssressesserssrsssssessessosssssessessossssssessessossossssens

AlGIN MASKING cvevvrrirrirsrrsirsississississsissssssssssssssssssssssssssasssssssssssssssssssssssssssssses
Tagged MaASKINGttt e e e ettt aans
iControl Alarms in Network VIeWc.enereiie ittt
iControl Alarm States and State Value Oto 100ooviiiiiiiiinnnnnnnn.
iControl Alarm AcKnowledging.oeeueeeuie i,

Design, Test and Run .
Orbit Design Mode and RUNMoOdeoveenieiuii it iiieeines
DeSIGNING ..ottt e e e e
=23 1 e S
RUNNING o .ottt et e et ettt ettt e e eneaenenenen

USErS, ROIES AN PEIMISSION...ueuvvereevreeeverrerrererssrssrerserssrssssssessessessossssssssssssossssssessessosassassns
CUSTOM PEIMISSIONS ...\ttt et et et ettt et ettt ieanenenns
Permission Widget Propertiesoeuueeeuieeuuaeeeiee e eeineeianennneenns

Themes
Create aTNeME. ... ettt e e ettt e
Setas CUITENt TREIMEttt et ettt ettt aeeens

MapView Home Screen
Initial Orbit Home Screen

B My_Monitor-by-Exception SRR X

File Edit Project View Tools Window RollCall iControl Control and Monitoring Help
]

Project X

My_Monitor-by-Exception

[edit name]

My_Monitor-by-Exception Project C:/Orbit_Projects/C&M Projects/My_C&M_Monitor-by-Exception

Manage Users Themes Screens
Network View

Logged in: admin

I:'ig. 2-1: Orbit MapView Project Home Screen

Initial Orbit Home Screen

Orbit MapView requires the Orbit Client software to be run with a MapView license installed on

a license server. It uses an Orbit control-and-monitoring type project (a C&M project). The
license is used when a project is run.

Orbit C&M Projects

To create a new project:
1 Click the ‘New project’ icon. See Figure 2-2.
2 Select ‘C&M project.
3 Enter a project ‘Name'.
4 Browse to the folder where the new project is to be created. Click ‘Choose’.
5 Click OK.

A new project is created in the folder.

Note: Creating new and opening existing Orbit projects is described in the
‘Orbit Introduction’ user manual.

10

Orbit MapView
User Manual

New Project mee Do v
) ‘ New Project EE

Project Type

IF Routing Project
Multiviewer Project

1Q Multiviewer Project Multiviewer Project

Description

Creates a project for general control and menitoring, including router control.

Details

Projects Brow

Fig. 2-2: Creating a New Orbit ‘Control and Monitoring’ Project

11

MapView Home Screen
Initial Orbit Home Screen

C&M Project Home Screen

The project home screen of an Orbit C&M project is shown in Figure 2-3.

Main menu bar
Main tool bar

" My C&M Project =)

File Edit Project View Tools Window RollCall Control and Monitoring jControl Help

©

Project My_C&M_PI’O] ECt —

My_Example ¢ 5]
My_Monitor-by-Exception Project C:/Orbit_Projects/C&M Projects/My_C&M_Project
My_C&M_Project

Manage Users Themes
Network View

Logged in: admin

Fig. 2-3: Orbit C&M Project Home Screen

The project home screen contains three large icons:
- Manage Users - Click to create new users and user roles with permissions.
By default, a new project has one user set up:
user name = ‘admin’; and
password = ‘admin’.
See Users, Roles and Permission, on page 35, and refer to the ‘Orbit Introduction’ user
manual for more information.
« Themes - Click to show the Theme Editor.
See Themes, on page 38.

Note: Refer to the ‘Orbit for Multiviewers’ user manual for more information
about on-screen Themes.

+ Screens - Click to open a screen in the screen Schematic Editor.
This document uses Orbit MapView screen in examples.

Note: Refer to the ‘Orbit for Multiviewers' user manual for basic instructions
on using an Orbit schematic editor, widgets, and Behaviours and Bindings.

12

Orbit MapView
User Manual

Main Menu Bar Items

Note: Refer to the ‘Orbit for Multiviewers' user manual for full information
about other main menu/tool bar items.

There are some specific Orbit MapView main menu bar items:
- Project > Set as Home- see Project > Set as Home, on page 13.

+ Tools > Options > Monitoring - see Tools > Options > Monitoring - Masking tab, on
page 14.

- Tools > Options > MapView - see Tools > Options > MapView, on page 16.

» iControl - see iControl Menu Bar Item, on page 18.

» Control and Monitoring - see Control and Monitoring > Properties (Main Menu Bar Item),
on page 20.

See Figure 2-4.

.
B My_C&M_Project

File Edit View Window RollCall | Control and Monitoring Help

(4]

Project x .
My_Example M y_C&M_PrOJ ect
My_Monitor-by-Exception Project C:/Orbit_Projects/C&M Projects/My_C&M_P

Fig. 2-4: Orbit C ~l-’roject - Menu Bar

Project > Set as Home

With a top-level screen open in the schematic editor:
+ Click ‘Project > Set xxx as home’in the main menu.

This sets the top level schematic as the ‘Home' screen.

Note: This is required for Orbit Services to correctly parse a project’s hierarchical tree structure
and evaluate a project’s ‘Link State’

B My C&M_Link-State (%)
il Project View Tools Winglow RollCall Control and Monitoring iControl Help

Set Top' as Home

Top.schx €

Fig. 2-5: Tools > Options > MapView

13

MapView Home Screen
Initial Orbit Home Screen

Tools > Options > Monitoring - Masking tab

The Masking tab of the ‘Tools > Options > Monitoring’ main menu contains various setting
associated with masking alarms.

‘ Options [? RS

App

Video

Masking

Licensing Menus

Launch

Enable Standard Masking Enable Tnvert

Remotes
Links
Pop-ups
Monitoring
Mask Until Time Configuration

Map View

1 Min 5 20 Mins
(60) (300) (1200)

XY Panel 1 Hour
(3600)
Title:

Time (seconds): 0

Mask with Tag (Add/Remove Tags)

Ch1 Maint
Encoder Fault

Add

Delete

Fig. 2-6: Tools > Options > Monitoring - Masking Tab

Table 2-1: Tools > Options > Monitoring - Masking Items

Item Description

Menus Check boxes.
Enable various masking facilities in the Orbit MapView project.
Enable Standard Masking

Select to enable the standard masking mode for units and Log Field headers.
Alarms from a unit/Log Field header will be suppressed in the system.

Masking is applied to an alarm until it is removed by the user (unmasked).
Enable Mask Until Green
Select to enable the ‘Mask Until Green’ masking mode.

Alarm/status value(s) from a selected unit will be suppressed (masked) until the alarm
state is “Green’, i.e. “OK". After this, the alarm is unmasked, i.e. an alarm condition will
be raised by the alarm/status value(s).

14

Orbit MapView
User Manual

Table 2-1: Tools > Options > Monitoring - Masking Items (continued)

Item

Enable Mask Until Time

Enable Mask With Tag

Enable Invert

Description

Select to enable the ‘Mask Until Time’ masking mode.

Alarms from a selected unit will be suppressed (masked) for a period of time. After
this, the alarm is unmasked, i.e. an alarm condition will be raised by the alarm/status
value(s).

There are six configurable ‘Mask Until Time' rules which can be configured on buttons
in a panel in the dialog.
See the Mask Until Time Configuration table item below.

Select to enable the ‘Mask With Tag’ masking mode.

Mask tags can be defined. (See the Mask With Tag table item below.) This enables
standard masking to be done but in a tagged way, enabling a unit to be masked for
more than one reason.

See Tagged Masking, on page 29.

Select to enable ‘Invert’ masking mode, where all ‘Warnings’and ‘Failures’ are set to
show an ‘OK’ status.

Applying this ‘invert’ can be done via an Alarm Mask Behaviour.

Mask Until Time Configuration

1 Min (60)

5 Mins (300)

20 Mins (1200)

1 Hour (3600)

24 Hours (86400)
7 Days (604800)

Six ‘Mask Until Time’ rule buttons via a panel.

The rules are set by default to durations ranging
from 1 minute to 7 days and are user configurable:

To configure a rule:
« Click on a button in the panel.
« Enter a Title (in the text box below it).
« Enter a Time (seconds) duration.

Title

Text box.

Enter a name for the selected ‘Mask Until Time'rule button.

Time (seconds)

Time value (seconds).

Adjust this time value required for the selected ‘Mask Until Time'rule - use the
up/down arrow controls.

Mask With Tag (Add/Remove Tags)

A list of mask tags. See Tagged Masking, on page 29.
To add a tag item:

+ Click Add.

+ Edit the tag name.
To delete an item:

+ Select an item.

+ Click Delete.

15

MapView Home Screen
Initial Orbit Home Screen

Tools > Options > MapView

Button widgets in Orbit MapView screens may be used to link to other screens with Orbit Link
Behaviours. The buttons can show the overall ‘state’ of the lower-level, ‘linked-to’ screen. The
set of overall states for a project is called the Link State. This ‘Tools > Options> MapView’
configuration item provides Link State display options for such Button widgets.

r‘ Options l ? &1

App

Video

Schematic Links

Licensing

Launch

Flash border on error

Remotes

Links State Colors
Pop-ups

Monitoring

Map View

WARN (50)

XY Panel

I:'ig. 2-7:Tools > Options > MapView

Table 2-2: Tools > Options > MapView Items

Item Description

Schematic Links

Radio buttons:

Display State Using Border

Select to show ‘state’via a colored border. See Figure 2-8a.
Display State Using Fill

Select to show ‘state’ with a colored fill. See Figure 2-8b.
Flash Border on Error

Check box.
Select to flash the colored border in case of a warning or an error state.
This is done when Display State Using Border is selected.

State Colors List of colors to be used to show the state.

Click on a horizontal colored bar to edit the colors used.

16

Orbit MapView
User Manual

Multiviewer 1
1000: AD:01

Multiviewer 2
1000: AD:02

Video Proc Video Proc

Prod Switcher

IE

a) Border Color b) Fill Color
Fig. 2-8: State Shown: a) Border Color; b) Fill Color

State Value 0 to 100

In Orbit, state is represented with an integer value from 0 to 100, inclusive, described in
Figure 2-3

Table 2-3: State Values

State Value State Description Color Representation
0 Unknown state or a masked state Gray
1 OK ~ Green
2to 48 Not used
49 Warning, acknowledged - DarkYellow
50 Warning Yellow
51t098 Not used
29 Fail, acknowledged
100 Fail | Red |

MapView Home Screen
Initial Orbit Home Screen

18

iControl Menu Bar Item

Orbit can be configured to connect directly to a Grass Valley iControl server (General Services
Manager, GSM). Orbit can obtain alarms (virtual or real) which can be used on the screen like
other alarms, as required.

To enable GSM alarms to be seen in the Network View, configure Orbit with one or more
iControl servers. In the Orbit main menu bar.

+ Click iControl > Configuration in the main menu bar. (See Figure 2-9.)

The ‘iControl/Densité Configuration’ dialog is shown, see Figure 2-10.

In this dialog, the IP addresses of multiple iControl Servers can be entered. The iControl servers
can optionally provide the following functionality to Orbit: a Lookup service, a GSM REST API,
and a Densité REST API. These can be enabled/disabled independently for each iControl Server.

B My_Ca&M_Project (%)

File Edit Project View Tools Window RollCall Control and Monitoring | iControl | Help

(+]
Project
My_Example

Fig. 2-9: iControl > Configuration

B iControl/Densite Configuration ? X

iControl Server Connection

IP Address(s): 172.19.160.204

Lookup Service GSM REST Densite REST
Delete
Username: admin

Pa rd: ssene

Other Settings

Panel Launcher Port: 9627

Cancel

Fig. 2-10: iControl/Densité Configuration Dialog

Configuration

My_C&M_Prc

First IP address listed will be used
for GSM alarms.

Other IP addresses can be used for
Densité connections.

Click Add to add an iControl Server
IP address

Orbit MapView
User Manual

Table 2-4: iControl/Densité Menu Bar Items

Item

Description

iControl Server Connection:
IP Address(s)

Add iControl Server IP address(es).

Note: First IP address listed will be used for GSM alarms.
Other IP addresses can be used for Densité connections.

Lookup Service

Check box.

This is automatically selected for each added IP address.
This is a Query service to enable discovery of other iControl
services.

Deselect service if required.

GSM REST

Check box.

This is automatically selected for each added IP address.

This provides a RESTful application programing interface (API)
to a GSM alarm service.

Deselect service if required.

Densité REST

Check box.
This is automatically selected for each added IP address.
This RESTful API to an iControl server.

Deselect service if required.

Add

Button.
Click to add an IP address to the list.

Delete

Button.
Click to delete the selected IP address in the list.

Username

Text box.
Enter a username for the iControl server.

Note: The Username and Password applies to all listed iControl
servers.

Password

Text box.
Enter a password for the iControl server.

Note: The Username and Password applies to all listed iControl
servers.

Other Settings:

Panel Launcher Port

Text box.
Enter the IP port number to use to communicate with the
Densité Panel companion application.

Note: The Panel Launcher Port applies to the Densité Panel
application running alongside Orbit on the client PC.

Note: The Densité Panel is used to view device control screens
of iControl/Densité devices (see iControl/Densité Device
Control Screen Panel, on page 26).

19

MapView Home Screen
Initial Orbit Home Screen

Control and Monitoring > Properties (Main Menu Bar Item)
A main menu bar item.
+ Click Control and Monitoring > Properties in the main menu bar.
A ‘properties dialog is shown, see Figure 2-12.

B My_Ca&M_Project (%)

File Edit Project View Tools Window RollCall Control and Monitoring iControl Help

Properties

(+]

Project X M

‘ Properties l PRl <
Note: The RollCall domain should match
RollCall the client domain configured in the Orbit
Domain Services.
The Orbit client then sees device and
Current Home service items in the same domain; and
[schematics/A-Schematic. schx items appear in the Network View pane of

the Orbit client application.

Current Theme

[themes/My_Theme.theme

Cancel

Fig. 2-12: Control and Monitoring > Properties Dialog

Table 2-5: Control and Monitoring > Properties Dialog Items

Item Description
Domain Enter the RollCall domain for the Orbit MapView client to use.
See Note 1.

Current Home Shows the screen currently set to be the home screen.

To set a screen as the home screen:

« open the screen schematic and click Project > Set as Home in the
main menu bar.

Current Theme |Shows the currently set theme.

To set a theme to be the current theme:

+ Right-click on the theme in the Project View and
select Set as Current Theme.

Note 1:| The RollCall domain should match the client domain configured in the
Orbit Services. Items will appear in the Network View pane of the Orbit
client application.

20

Orbit MapView
User Manual

Network View

The Network View pane in Orbit shows system devices in a hierarchical list which forms an
expandable tree folder structure.

System devices can be various pieces of Grass Valley equipment.
For example:
- iControl General Service Manager (GSM) folders and alarms.
+ Densité modules or frames.
IQ modules or frame (via RollCall).

+ 1Q module frame and module logging data from a Log Server.

Virtual alarms.
+ Routing devices.

Figure 2-13 shows an example Network View pane. Devices and groups of devices in the
system are shown and their live (non-latched) alarm state is shown (OK, Warning or Fail/Error).

User Folder

Live (non-latched) alarm state indicated.

Device Folders
« Warning

Fig. 2-13: Example Network View Pane

Folders

Items in the Network View are grouped under specific top-level folders (root elements):
+ RollCall - Contains all RollCall/IQ devices and log data.
- Densité - Contains all devices from the iControl Densité manager.
- iControl Alarms - Contains all the alarm from iControl GSM manager.

+ User - Allows custom groupings of devices to be created. Devices may be from any of the
other top-level folders.

21

MapView Home Screen
Network View

User Folder

User folders can form a list of frequently-accessed devices, or they may be used for monitoring
purposes (by creating a virtual alarm for all devices in a User folder.

Folders can be created within the User folder and any devices and/or other user sub-folders
can be added.

ynnel 1 (DO00:AD:00)

-
T
-
-
LTI
®
®
®
LTI
®
o
o
LTI
o

[N N N]

Fig. 2-14: Example User Folder View

To Add (Create) a Sub-folder
1 Right-click on the User folder (or on any sub-folder) and select ‘Create Folder.
2 Enter a folder name and click OK.

To Delete a Sub-folder
1 Right-click on the sub-folder item and select ‘Delete Folder.
2 Confirm by clicking ‘Yes:

To Rename a Sub-folder
1 Right-click on the sub-folder item and select ‘Rename Folder.
2 Enter a new name and click OK.

22

Orbit MapView
User Manual

Network View

W User
My_User_Folder

2 Rolical Unit Info

Create Folder
Delete Folder

Rename Folder

Assign Address

Fig. 2-15: Right-click Context menu

To Assign a RollCall Address to an Item
1 Right-click on the sub-folder item and select ‘Assign Address.

2 Enter a RollCall address and click OK.
The RollCall address is associated with the sub-folder item (as shown in Figure 2-16).

To See Information about an Item
1 Right-click on the sub-folder item and select ‘Unit Info'

2 Enter a new name and click OK.
A Details window is shown. See Figure 2-16.

Metwork View

ﬂ Details: My_User_Folder

Wy User
My_User_Folder (1000:C0:00) GroupBox
= Rollcal
MName My_User_Folder

Address: 1000

g User
Alarm

Fig. 2-16: Item Information in Details Window

To Add Devices to a Folder/Sub-folder
1 Drag and drop units from one of the other folders into the user folder/sub-folder.

When devices have been added, they are fully functional with their normal Network View
folder item behavior: Normal right-click context menu functions are available, i.e. the folder
structure can be expanded/collapsed; the Densité parameters editor can be opened; and the
IQ control screen editor can be opened.

To Remove an Item
1 Right-click on an item and select ‘Remove Item’to remove the device/sub-folder.

23

MapView Home Screen
Network View

User Folder RollCall Address and iControl/Densité Devices

Note: iControl/Densité devices are discoverable in the Network View
pane’s Densité folder when iControl/Densité configuration has been set
up (see iControl Menu Bar Item, on page 18).

A User Folder can be used to provide one or more iControl/Densité devices with a RollCall
address. This is useful in Orbit.

Some Orbit Services (Monitoring, Recording) just handle RollCall addresses; and, in these cases,
an Orbit MapView project can be used to provide devices with a RollCall address.

1 Open a MapView project.
Configure the iControl Menu Bar Iltem, on page 18, to connect to an iControl server.
Create a new User Folder in the Network View pane.
Assign a RollCall address to the folder.
Drag iControl/Densité devices into the User Folder.

A L AW N

Save project to a location when the Orbit services have access to the project. (Shared drive
or Git repository - see the Orbit Services user manual.)

The iControl/Densité devices are now accessible to the MapView project via the RollCall
address.

24

Orbit MapView
User Manual

Accessing Device Control Screens

The control screens of discovered devices in the Network View pane are accessible by:
1 expanding the list;
2 right-clicking on a device item; and
3 selecting ‘Open Control Screen’in the context pop-up menu.

The control screen is shown for the selected device:

+ RollCall-enabled device - the control screen is opened within the Orbit Client tool.
(See RollCall-Enabled Device Control Screen, on page 25.)

- iControl/Densité device - the control screen is shown in a launched Densité device panel.
(See iControl/Densité Device Control Screen Panel, on page 26.)

RollCall-Enabled Device Control Screen

r‘ MVE50 ()

File Edit Project View Tools Window RollCall iControl Multiviewer

(]

Metwork View

t Input 1
Input 2
7L Unit Info
4: Input 4 | |
05: Input 5 Load Control Screen
5: Input 6 Copy Address \

-

Fig. 2-17: Right-Click on Network View Device Item

ri MVBS0 () = | B |

File Edit Project View Tools Window RollCall iControl Multiviewer Help

° S [of

Network View x MV-840/850 - 0000:20:00 - 817 &
System ~ NTP Status
System: OK synchronised to NTP server (85.199.214.99) at stratum 2
time correct to within 7 ms

MV Node (FFFF) Audio Alarms polling server every 64 s

MV-840/850 FFFF:20:00
i = Reference Alarms

Product = -
Product Name Serial Number W System Reset
MV-840/850 556123392 A System Reset is Required for Changes to Take Effect. Pressing "System Reset"
will result in outputs from the Multiviewer being Interrupted.

Software Version — Build Number Yy |

3IATS 316 STSIEEE |

[cne][conim |

 FPGA Version
290
Input 10

L i — Netwark Settings

Input 12

Tnput 13 — 1G1 Interface . — 1G2 Interface

Tput 14 IP Address ~ — DHCP 1P Address ~ [~ DHCP
Tnput 15 O Enabled 10.162.51.201 [J Enabled

Input 16 e | — Default Gateway Address | | =3 a " = Default Gateway Addres
Input 17 2 10.162.254.1 ™) 2 10.162.254.1]

Input
Input 20
g 15: Input 21

00:23:70:00:44:35 00:23:70:00:44:34

Fig. 2-18: Device Control Screen Opened in Orbit

25

MapView Home Screen

Accessing Device Control Screens

iControl/Densité Device Control Screen Panel

26

Control screens for an iControl/Densité device are opened directly from Orbit and are shown in
a launched Densité Panel application, a companion application to Orbit.

The Densité Panel application is installed automatically when installing Orbit 3v1 onwards.
There is a prerequisite that the Java runtime environment is already installed on the Orbit client
computer (Java SE Runtime Environment 8u121, 32bit).

Note: If Java is not available on the Orbit client computer,
the ‘Open Control Screen’drop-down menu option is grayed-out in the
Network View pane.

Densite

be grayed-out. If this is the case, then wait and retry.

Orbit Configuration

In the Orbit client application, the location of the iControl Servers are configured through the
Orbit menu iControl->Configuration, see iControl Menu Bar Item, on page 18.

The Densité Panel requires a connection to the iControl server’s Lookup Service. The iControl
server’'s GSM RESTful APl and Densité RESTful API are required for Orbit to display Densité
devices in the Network View and the show the Alarm State of those devices.

Usage

Once the iControl server connection is configured in Orbit, the Network View pane displays a
tree view of the iControl/Densité devices.

Note: If the Network View pane is not visible,
then click ‘View > Windows'in the Orbit main menu
and select ‘Network Window’ to enable the Network View.

Network View

RSiControll
EM1
EM9
FR3Frame
Densite

Eth con Unit Info

HDA-18 Display Card Parameters
RIGWVN1
MV Node (FFFF) Open Control Screen ‘
A

Copy Address

Fig. 2-19: Right-Click Drop-Down Menu

1 Browse to the device of interest and right-click on it. Select ‘Open Control Screen’.

Orbit MapView
User Manual

The device’s control screen is shown in the Densité Panel which is opened a separate
window to Orbit.

= HCO-3901 [SLOT : 16] — X
COCIDIDITIC ['ﬂ G gassvaliey

L
Card Monitoring: GPI Power Box Emor
Switch

Operation Mode |nput 1
e Video Error j@Level 2

Output

Audic Embed
®Level 1 Video Error

Input 2
Video Error

Fingerprint

RALM

+ || Thumbnail

Options
Bypass
Factory
Alarm config
Infa

User Presels

Load

Profiles

Fig. 2-20: Example Densité Device Control Screen (shown in Densité Panel window)

Additional Information

Orbit maintains a ‘heartbeat’ signal with the Densité Panel which ensures that if Orbit is closed
before the Densité Panel, then the panel will also close.

If in some cases the Densité Panel takes an extended length of time to open and show a
device's control screen, Orbit will present an Open Control Screen dialog to the user. The user
may then cancel the operation or retry.

reen for IPG-3901 i ng a long time to open. Continue
reset launcher applicat

Retry

Click Retry to attempt to open the device’s control screen again

Click Reset to cancel

Fig. 2-21: Open Control Screen Dialog (shown if Densité Panel takes a long time to open)

27

MapView Home Screen
Device Details

Device Details

To show a device’s ‘Details’ window from the Network View pane:

« Right-click on a device in the Network View
and select ‘Details’

See Figure 2-22.

Right-click, select ‘Details’ . .
‘Details’ windows:

Network View ¥ Details 1000:E0:01 - 1000:E0:01

Sorthy - Filter: @) Header) Value fil... = Clear

Header Value
HEADER.)

‘ Details 1000:E0:02 - 1000:E0:02

Details Sortby ~ Filter: @) Header O Value fil... = Clear

3

Ma - Header Value

Virtual Node F10C Unit Info
Virtual Node F

Rename
Copy Address
¥ Details 1000:E0:03 - 1000:E0:03

Sortby ~ Filter: @) Header) Value fil... = Clear

Header Value
HEADER.)

- 1000:E0:04

Filter: (® Header () Vvalue fil... = Clear

Live (non-latched) alarm state indicated. Latched alarm state indicated.
Fig. 2-22: Details Windows

The live (non-latched) Alarm state is indicated in the Network View.

Both the live and the latched Alarm state are indicated in the Details window.

28

Orbit MapView
User Manual

Alarm Masking

Masking affects the overall displayed state. If a device’s alarm is masked then its state value is 0.

« Right-click on an item in the Network View and choose the masking option from the
context menu.

Tagged Masking

Alarms from system devices may be masked. Tagged masking is useful where there may be
more than one reason for masking a device/unit. For example, a unit may need to be masked
for operational maintenance reason and/or for some fault condition reason. Tagged masking
enables two or more maskings to be defined and used.

Define tags in the main menu, in the ‘Tools > Operation > Monitoring’ Masking tab.
If one or more Tagged Mask is applied to a device, then the device alarms are masked.
All Tagged Masks must be removed before a device’s alarms are unmasked.

Masking can be applied/removed via the Network View or via an Alarm Mask Behaviour.

To Mask a Device with a Tagged Mask via Network View

Two Tagged Masks are defined in the ‘Masking’ tab for this example:
+ 'Operational Maint’
+ ‘Device Fault’
To apply a Tagged Mask, in the Network View:
1 Right-click on a device item and select ‘Masking with Tag" (Figure 2-23a)

Network View

User
RollCall
my virtual node 0

Rack A Dev

Details
Mask Mask Unit

R : SR Operational Maint
Unit Info Mask Unit Until Green

3

Virtual Nod
Virtual Node H
Virtual Node 0o Copy Address Mask Unit Until Time

Rename Mask Unit with Tag Device Fault

My Masking Tag

;

a) Right-click, select ‘Mask > Mask Unit with Tag’ b) Select a Tag Mask
Fig. 2-23: Tag Mask

2 Select the Tagged Mask to apply. (Figure 2-23b)
A mask is applied to the device and this is indicated in the Network View. See Figure 2-24.

Grayed-out mask icon indicates alarms are masked

03

5 04: 1000:E0:04
Fig. 2-24: Grayed-out Mask Icon

29

MapView Home Screen
Alarm Masking

A further Tagged Mask maybe applied:

3 Right-click, select ‘Masking with Tag’and then select another Tagged Mask. See Figure 2-
25.

Operational Maint

Device Fault

3

My Masking Tag

Fig. 2-25: Apply Another Tag Mask

Now there are two Tagged Masks applied to the device: ‘Operational Maint’and ‘Device Fault’
The device/unit is shown as being masked in the Network View.

To Unmask a Device via Network View

To remove a Tagged Mask, in the Network View:
1 Right-click on a device item and select ‘Mask > Unmask Unit’. (Figure 2-26a)
If two or more Tagged Masks are applied to the device,

then these are presented on screen.
Select the Tagged Mask to unmask. (See Figure 2-26b.)

Note: The device will have one Tagged Mask removed, but alarms will still be masked by
any other remaining Tagged Mask operating on the device/unit.

Network View

User
RollCall

01
Details

Mask Mask Unit
Unit Info Unmask Unit k

Unmask All

Virtual Node
Virtual Node
Virtual Node F 0 Copy Address Mask Unit with Tag
Virtual Node F :00 sk Unit Until Time
i g -01-00 —
a) Right-click, select ‘Mask > Unmask Unit
Fig. 2-26: Tag Mask

Rename
Operational Maint S

Device Fault

elect a lag Mas

2 Toremove the other Tagged Mask, right-click on a device item and select ‘Mask > Unmask
Unit!
Note: If this is the only remaining Tagged Mask for the device/unit, then the unmasking is
done immediately; otherwise, a list of Tagged Masks are presented, similar to Figure 2-
26b.

When a device is fully unmasked, its alarm state is re-shown in the Network View. See Figure 2-
27.

Alarm state is unmasked and shown in icon in Network View

Fig. 2-27: Network View Shows Device Alarm State

30

Orbit MapView
User Manual

iControl Alarms in Network View

Metwork View Folder icons reflect the state of the alarm or of the folder.

“T"in alarm Tally icon indicates a textual alarm.
il

Current text value is displayed [in square brackets]
after the alarm name,

Fig. 2-28: iControl and Densité Alarms in Network View

iControl Alarm States and State Value 0 to 100

The states for folders and alarms are taken directly from the GSM manager; no aggregate state
calculation is performed by Orbit.

The iControl alarm state is mapped from the native GSM alarm state into the Orbit state
scheme (see State Value 0 to 100, on page 17):

-0 - Unknown / Masked

-1 -OK

. 49 - Warning Acknowledged

- 50 -Warning

. 74 - Major Failure Acknowledged
- 75 - Major Failure
.« 99 — Critical Failure Acknowledged

« 100 - Critical Failure
This casts the alarm state values consistent with other, non-iControl devices.

Orbit also maps the “acknowledged” states from GSM into overall state values to provide one
overall state value. This permits easier configuration of property Bindings because there is only
one state to deal with.

iControl Alarm Acknowledging

Acknowledge an alarm using the Grass Valley iControl navigator tool.

31

MapView Home Screen
Design, Test and Run

Design, Test and Run

When an Orbit MapView screen is open, it can be:
« edited in Orbit ‘Design Mode’;
- exercised in Orbit ‘Test Mode’; or
« runin Orbit ‘Run Mode’

Orbit Design Mode and Run Mode

To toggle between ‘Run Mode’and ‘Design Mode":
+ Click on the Run Mode / Design Mode button in the main menu. See Figure 2-29 and
Figure 2-30.

Run Mode / Design Mode Button in main tool bar

(In ‘Design Mode; click button to enter ‘Run Mode), and vice versa.)

Properties Box

= | = |-

‘ My_Custom-Logic-Example

File Edit Project View Tools Window RollCall Control and Monitoring iControl Help

Scale (78%) ~

(+]

Project X My_Radio-Buttons.schx € Properties
B screens

O Radio Button 1 Default *
My_Radio-Buttons.schx O Radio n2 Value set by Radio Buttons =

Fig. 2-29: Run Mode / Design Mode Button

Orbit in ‘Design Mode’ Orbit in ‘Run Mode’

Icon appearance

Icon when hovering
the cursor over icon k k

Run Mode Design Mode

Click icon to... Click icon to enter ‘Run Mode’ Click icon to enter ‘Design Mode’

Fig. 2-30: Design/Run Mode Icon Appearance and Usage

32

Orbit MapView
User Manual

Designing

Testing

In ‘Design Mode] a screen may be edited, widgets can be added and configured, and any
Behaviours and/or Bindings can be set up.

In ‘Design Mode; click the Edit Behaviours button to show the ‘Behaviours and Bindings’
graphical editor. See Figure 2-31.

Properties Box

= | E |-

Nindow RollCall Control and Monitoring iControl Help

Scale (78%) = '*

X My_Radio-Buttons.schx € Properties

O Radio Button 1 Default *

Value set by Radio Buttons =
O Radio Button 2

ge 1920 x 1080
Width 1921
Height 1080

! Alarm List ® <

Logged in: admin

My_Radio-Buttons.schx €

O Radio Button 1

3 Value set by Radio Buttons =
%) Radio Button 2 §
[

Width
Height
spect Ratio Custom

Default

All
Combine Rotation 0.00
Cus

Fig. 2-31: Showing the ‘Behaviours and Bindings’ Graphical Editor in Design Mode

Behaviours and Bindings on a screen can be exercised/tested from ‘Design Mode’ without
having to formally enter ‘Run Mode’ Test mode is a sort of ‘Run Mode'but no license is needed.

Click the Test button (see Figure 2-32) to enter ‘Test’mode. In ‘Test’mode, Behaviour/widget
values can be explicitly seen in the ‘Behaviour and Bindings’ graphical editor while the design
is running.

Click the Test button again to stop exercising and revert to ‘Design Mode".

33

MapView Home Screen
Design, Test and Run

My_Radio-Buttons.schx € Properties

O Radio Button 1

0 Value set by Radio Buttons =
@o Radio Button 2 E
I

Width
Height
ct Ratio

Default

Properties

Value set by Radio Buttons =, 2

In ‘Test’mode, Widget/Behaviour values are shown.
Fig. 2-32: Test Mode

Running

Enter ‘Run Mode’to run the whole project on the client PC. This requires an Orbit license.

34

Orbit MapView
User Manual

Users, Roles and Permission

By default, a new Orbit project has one user already set up:
user name = ‘admin’;
password = ‘admin’.

To set up project login details for individual people and/or roles:

1 Click on the Manage Users icon on the project home screen.
Three tabs are shown: Roles, Users and Permissions. See Figure 2-33.

db.users &
Roles U
Add Role

Name Description Role name

administrator ailable

2 supervisor Cannot manage us

able to modify projects

Description
3 operator Read-only access to projects
Permissi

Allowed Available
db.users @
Roles Users Per
Add User Delete User
User name: user Membership

Change... Users in role Users not in Role

operator
admin 5 A N Other

Logged in: admin

db.users o .
users & Custom permission

Roles Users Permissions
Add Permission
Name Description Type

1 Edit screens Ability to edit visual elements like panels, themes, etc. built-in

2 Add/rename/delete files or folders
3 Add/edit u
Pull from rep

5 Pushtore

Add/rename/delete or import project files or directories
Ability to modify user accou without this perm
Ability to update project from remote repository

Ability to push project to remote repository

built-in

n can only change his own password built-in

built-in

built-in

Ability to import theme fi om another projext built-in

Ability to import configuration from another project built-in

c) Permissions Tab|

Fig. 2-33: Manage Users Tabs: a) Roles; b) Users; and c) Permissions

2 Create roles with certain permissions as required in the Roles tab.
3 Create new users in the Users tab.
4 Assign arole to a user in the Roles tab.

Note: Refer to the ‘Orbit Introduction’ user manual for more information.

35

MapView Home Screen
Users, Roles and Permission

Custom Permissions

Custom permissions can be created alongside the existing permissions and they can be
assigned to roles. These allow user access to be tailored to operational needs.

Using custom permissions, access-control to Orbit MapView project screens or widgets can be
designed into an Orbit MapView project.

Permission Widget Properties

Widgets have ‘Permission’ properties. These determine whether a) a logged-in user may use a
widget or access screens in a running Orbit MapView project; and b) how it appears on-screen.
This is based on a user’s ‘Role’, which will include or exclude various permissions.

For example, access to a screen with certain operationally-sensitive controls can be limited to
any logged-in users whose role includes a certain permission. For example, the ‘Edit screens’
permission, or a custom permission. Access to a Button widget which accesses sensitive
screen(s) can thus be controlled.

Widget permission properties include:
» Permission
» Permission Type

Permissions.schx &

[l Anyone [Wt o Also Edit Custor pe. N s
: Disable _ 1 46.00
]

L = Width
Height
ect Ratio

Lower label None

Upper Label
Toggle False

Fig. 2-34: Widget Permission Properties

36

Orbit MapView
User Manual

Table 2-6: Permission Properties

Property Description
Permission Drop down box.
<none=
Permission <inherit>
Edit screens
Add/renamefdelete files or folders
Addfedit us
Pull from repository
Push to repository
Import themes
Import settings
My User Permission
Options:
« <none> - No access control on the widget.
« <inherit> - Widget inherits permission from parent
widget/screen/component.
A widget may only be used if user role has:
« Edit screens - screen/component/theme editing permission.
- Add/rename/delete files or folders - project file/folder
editing permission.
- Add/edit users - ability to modify user accounts etc.
« Pull from repository - project ‘push to a repository/device’
capability.
+ Push to repository - project ‘pull from a repository/device’
capability.
+ Import themes - ability to import a theme (from another
project).
- Import settings - ability to import configurations from
another project.
« My User Permission - user-defined permission.
Figure 2-33c lists the permissions.
Permission Type Drop down box.

Defines how a widget appears on-screen if a user does not have the
correct permission.

- Disabled - Select to show widget grayed-out on screen if user
does not have sufficient permission.

- Hidden - Select to hide widget on screen if user does not have
sufficient permission.

37

MapView Home Screen
Themes

Themes

Orbit MapView projects are typically a set of user screens with graphical widgets. The
appearance of widgets can be customized by using Themes. A Theme in Orbit is a collection of
widget styles. A Theme can be applied to a whole project or on a widget-by-widget basis.

Note: Forinformation about Themes, see the ‘Orbit for Multiviewers’ User
Manual.

Create aTheme

To create a new Theme:
1 Right-click in the Project View on the ‘themes’folder.
And select ‘New Theme'. See Figure 2-35.

A new Theme is created.

Project *

My_C&M_Command-Line_Beh
My_Monitor-by-Exception
B components

. images

B

B resource

B schematics

o MNew Theme

db.user Import Theme(s)

Fig. 2-35: New Theme

2 You are prompted if you wish the new theme to be the current theme.
(This can be changed at any time.)
The Theme Editor is shown in the Orbit MapView window. For example, Figure 2-36.

38

Orbit MapView
User Manual

Top.schx My_Theme.theme €

AudioPhase Audio Border Controls Clocks Shapes ExceptionMonitoring Image Label L4 Style Name: Default

Clock Face ...
Clock Face L..
Clock Face L..
Clock Face ...
Clock Hour ...
Clock Minut...
Clock Secon...

Label
e

Upper caption
Lower caption
Text Backgr

Jorder Color
er Thic...

Fig. 2-36: Theme Editor

In the Theme editor, widget appearance can be changed for the new Theme.

Set as Current Theme

A new Theme can be set as the current Theme to be used by:

1 Right-clicking on the Theme in the Project View
and selecting ‘Set as Current Theme".

‘ My_Monitor-by-Exception (*)

File Edit Project View Tools Wi RollC: iControl Control and Monitoring

L] (+]

Project X 0 My_Theme.theme €

AudioPhase Audio Border Controls

themes
My_Theme.theme)
S Open
configuration.prj
Rename
_Ltlg'FiE|d'Eg CUF“}"
_Bindings
E_Demo

My_GSM-iControl

Network View

Fig. 2-37: Set as Current Theme

39

MapView Home Screen
Themes

40

3 Working with Widgets

Summary

Working with Widgets

Widget Properties QNA VAIUEeoveovrversissesseissississsssisssisssisssens page 42
Properties and the Property Binding...............ouenuiiiiiiniiniiiiiiniinenannnn. page 42
Value and the Direct BiNding...........ouuueueun ettt i iieiaeieennns page 43

Using Behaviours and Bindings page 44
Stabilized Value.o page 44
NON-Stabilized ValUes.oeu e e e et iieaans page 45

Setting Up a Test Bench page 46
Pie Chart WIdget.eee ettt e e ettt ie e ieanns page 47
Create aTest BeNCh SCreen............uuueeui ettt ettt ie e iiaenns page 48
Calculate an Intermediate DataValue.ccouieiiiiiiiieiiiinannnnnn. page 50
Bind ‘Widget Under Test'to Stimulus Valuesc.ccovuiiiiniiiiniiinnann. page 53
Exercise the ‘Widget Under Test’ with Test Bench.cccoviiiiiiiineiinna.. page 56

Extend Widget Functionality with Behaviours and Bindings page 58
Adding Extra FUNCtiona@lity.ooueeuieuin ettt ie e iie e iaeenens page 58
Exercising the Extra FUNCion@lityoouueuiiiiniiii et eineiaeeinann, page 61

Monitoring by Exception page 62
Monitoring by Exception (MbyE) Widget.cooeuieiuniiiiiiiiiniiineannn.. page 62
Configuration Dialog of the MbYE Widgetcoovuuuiiiieiiinniiiiiinneenn. page 66
Monitoring by Exception EXample.oeeuieiiiiiiii it iineeiiaennnn. page 68

AULO-Fill PIOPEITY VIAIUES .e.oeereeeeererreisrisrirssisssisssisssississssssinsssns page 69
Auto-Fill Example 1: Set a Single Property across Multiple Widgets.................. page 69
Format SyntaxofaStringValue.ouiuiiiiiniiiniiiniineenineenns page 71
Auto-Fill Example 2: Set Multiple Variables on a Single Widget/Component......... page 72

Viewing Log Messages (Alarm List Widget) page 75
Lo L3 et 1o o T page 75
Alarm LISEWIAQGet. ...ttt e et ettt page 76
Using an Alarm List Widget in Orbit MapViewcccoveiiiiiiiiniiniinnnn. page 76
Alarm List Widget FEAtUIES.uue ettt ittt iie e e ieens page 79

This chapter describes how to work with the on-screen graphical widgets. Most widgets are
described in the ‘Orbit for Multiviewers’ user manual.

41

Working with Widgets
Widget Properties and Value

Widget Properties and Value

Orbit on-screen widgets may have:
+ Properties.
+ Avalue.

Properties and the Property Binding

Properties control a widget's physical appearance or configuration (for example, border
thickness, border color).

Properties Box

Properties can be manually set in the Properties Box. (See Figure 3-1.)

Properties box

My_Direct-and-Property-Binding.schx €3 Properties

RHS text

Width
Height

.ustom

Default *
Behaviour:
0.00
herit>
Disabled

All
Command Line

Local Value Behaviour for TextE...
Load Control Screer
Local Timer
Local Value Scope Internal
Log Field Name Local Value Behaviour for Borde...
V-Flex Control

Initial Value My_Value

Initial Value 7
Scope Internal

I+ Command

Bindings

Fig. 3-1: Properties Box

Property Binding and Direct Binding

A Property Binding is used to access widget properties via Orbit Behaviours and Bindings;
whereas a Direct Binding accesses a widget value. Figure 3-2a and b shows an example widget
with Orbit Bindings accessing a widget's value and properties for Orbit Behaviours.

42

Orbit MapView
User Manual

Value and the Direct Binding

A widget value normally matches the content/current value of the widget. For example,
content of a text box.

Note: A widget’s value may also include some additional value attributes
(for example, ‘visibility, ‘read-only’ and ‘error state’) which may be
hidden from the user and only used programmatically.

However, some widgets do not have a ‘value’ (for example, a Rectangle widget has no sensible
‘value’).

A Direct Binding is used to access a widget's value.

Figure 3-2 shows the use of Bindings to access a widget's value and properties.

Border property
Text Edit widget: /
My _Val
y_Value_
Widget value

a) Text Edit widget on-screen

Direct Binding to access ‘Value’

Behaviours

All
Command Line

trol Screen

Local Timer . n

Local Value Text Edit WIdget:
Log Field

MV-Flex Control

v3 Command

e
g Property Binding to access a ‘Property

SNMP Set

b) Direct and Property Bindings stored copies of values and properties on Orbit

MapView screen.

Fig. 3-2: Widget Example:
a) Text Edit Widget On-Screen.
b) Direct and Property Bindings.

43

Working with Widgets

Using Behaviours and Bindings

Using Behaviours and Bindings

Many different functionalities may be defined on Orbit MapView screens. Screens may contain
graphical widgets whose inter-action with other widgets and to other monitored values is
defined with Behaviours and Bindings.

To define the logic behind widgets, widget property values and Behaviour values are linked
with Bindings.
A Binding can link:

+ A Behaviour value and another Behaviour value; or

« A Behaviour value and a property value.

When a Binding is made between Behaviour_A and Behaviour_B/Property_B,
then the value of Behaviour_B/Value_B is always kept up-to-date from the value of
Behaviour_A, and vice versa.

Behaviours and Bindings are listed in Appendix B List of Behaviours and Bindings, on page 355.

Stabilized Value

44

Example:
Figure 3-3 uses Direct Bindings to link three Behaviours (Local Value Behaviours) together.
One Behaviour value is initialized to 99 on the screen.

My_Binding-Ring.schx

B Label widgets,

Local Value 1 (init to 99) used to display the
values of the Local Value

Behaviours
Local Value 2

Local Value 3

Beha...

All
Alarm Mask . Local Value Behaviours

Lo Tim . . .
Local Value Direct Bindings
Lock

Log Field

o

Alarm
Audio Lewvel
A

Bindin....
Fig. 3-3: Direct Bindings Connecting Behaviour Values

When this is run, the three Behaviour values are quickly all set to 99. The values have been
updated and the values have settled, stabilized.

Orbit MapView
User Manual

Non-Stabilized Values
However, if a Binding is used which changes a value (for example, a Math Binding which
increments the value by one), then a loop could be created which upsets the ‘settling down’ of
the value when the Orbit project is run. When the example in Figure 3-4 is run, all Local Value
Behaviour values increase continually and the values do not settle - they have not stabilized.

This kind of loop should be avoided.

My_Binding-Loop.schx

Local Value 1 (init to 99)

Local Value 2

Local Value 3

Math Binding adds one.

My_Binding-Loop.schx

‘Local Value 1’ value
I 12178
Snapshot
12178 . .
I Values continually increment
by 1 indefinitely
(unstable loop).

‘Local Value 2’ value

‘Local Value 3'value
12178

) Snapshot of the Screen of the Running Loop Design

Fig. 3-4: Avoid Non-Stabilized Loops

Note: Avoid unstable loops forming with Bindings and values.

45

Working with Widgets
Setting Up a Test Bench

Setting Up a Test Bench

46

As with any design procedure, it is useful and beneficial to be able to exercise and test parts
and/or all of a design; this is the case with Orbit widgets, Behaviours and Bindings etc. A ‘test
bench’screen can be set up to provide stimulus to and monitor the behavior of a design, a
screen or set of screens. This is shown with an example is this section.

The Pie Chart widget will be the widget under test here. A widget test bench screen can be set
up to provide dynamic data to the widget by using a Property Binding to bind Orbit Behaviour
values to the pie chart segments.

For an example system here, data will be available from some system device (‘current data rate’
and a ‘maximum data rate’) via Orbit Behaviours. (These are derived from RollCall log fields or
from some other source available to Orbit.) In our test bench example, on-screen Text Edit
widgets are used to source the data values and the following are covered:

« Pie Chart Widget, on page 47;

« Create a Test Bench Screen, on page 48;

« Calculate an Intermediate Data Value, on page 50;

« Bind ‘Widget Under Test' to Stimulus Values, on page 53; and
« Exercise the ‘Widget Under Test’ with Test Bench, on page 56.

Orbit MapView
User Manual

Pie Chart Widget

The Pie Chart widget is presented here and is used in some of the following examples to
demonstrate designing and running Orbit MapView projects.

The Pie Chart widget can be configured with 2 or more segments and is designed to show the
relative proportions of two or more data values. See Figure 3-5. The segment sizes displayed
represent each data value’s proportion of the total. Data values are entered as property values
(property 'segment value’).

For example, for segment values set to 60, 20, and 10, the displayed pie chart segments show
67%, 22%, and 11% proportions (i.e. 60/(60+20+10); 20/(60+20+10); and 10/(60+20+10)). See
Figure 3-5.

Pie Chart widget on screen Widget properties

B My_C&M PieChart =ANEN X
File Edit Project View Tools Window RollCall Control and Monitoring iControl Hglp

° Scale (79%) ~ *

Project X PpieChart-Eg.schx @ Properties

Test Bench: Test Edit widgets Widget Under Test: Pie Chart
O o
1.]

2L 00000] Width
Height

s] Aspect Ratio

inherit=>

Disabled

3

PieChart-
60
PieChart-Fl
B themes

Network View

Logged in: admin

Pie Chart widget button
Fig. 3-5: Pie Chart Widget

47

Working with Widgets
Setting Up a Test Bench

Create a Test Bench Screen
The following example exercises a Pie Chart widget on a “test bench” screen. This uses data
from Orbit Behaviours which bound to some Pie Chart properties:

1 Generate a screen schematic and drag a Pie Chart and two Text Edit widgets onto the
screen. See Figure 3-6.

B My C&M PieChart = | B e
File Edit Project Tools Window RollCall Control and Monitoring jControl Help
°® Scale (54%) ~ '©

Project X pieChart-Flat.schx €@ Properties

Misiian Dot Capacky (Go1U5S0) Widget Under Test: Pie Chart Defoult *

|

Data Rate (Gbit/sec) Page
[| Width
Height

PieChart-

PieChart-Flat.schx
l themes

Network View

® ¢

Logged in: admin

Fig. 3-6: Screen with a Pie Chart and two Text Edit Widgets

2 Select the first Text Edit widget and click the Edit Behaviours icon.
The ‘Behaviour and Binding’ graphical editor is shown in the lower half of the schematic
editor area. See Figure 3-7.

48

Orbit MapView
User Manual

Properties of selected widget
Text Edit widget selected

PieChart-Flat.schx € Properti

Widget Under Test: Pie Chart
Maximum Data Capacity (Gbit/sec)

Data Rate (Gbit/sec)
Width
Height
spect Ratio

on
Behaviour ; HILEE

. . Al
Local Value item in AT

Behaviours list

Scope

Log Field
MV-Flex Control

Bindings

TextEdit Value Behaviour box at screen-level Text Edit Edit Behaviours icon
widget value

‘Behaviour and Binding’ graphical editor screen
Fig. 3-7: Setting Up Behaviours

3 Click on the Local Value item in the Behaviours list.
This places a TextEdit Value Behaviour box onto the graphical editor screen. See Figure 3-
7.

4 Double-click on the TextEdit Value Behaviour box in the graphical editor screen to change
some Behaviour settings (see Figure 3-8):

« Change Name to Max Data Capacity
« Change Initial Valueto 300
5 Click Close.

Edit Max Data Capacity

Name Max Data Capacity
Initial Value 300
Scope Internal

Fig. 3-8: Editing Text Edit Behaviour Settings

6 Repeat these steps for the second Text Edit widget, setting:
« Change Name to Current Data Rate
« Change Initial Valueto 20

This has created two Orbit Behaviours on a test bench screen to hold two data values for our
example interface (‘maximum data capacity’ and ‘current data rate’). This will allow us to
exercise the Pie Chart widget with the test bench screen.

49

Working with Widgets
Setting Up a Test Bench

Calculate an Intermediate Data Value

To make a Pie Chart show the amount of used and unused data capacity, an ‘Available Data
Capacity’ figure must be calculated on the test bench screen from the available data. This
calculation is done in a Binding and the value is held in a Behaviour.
1 Select the Pie Chart on the test bench screen
and click the Edit Behaviours icon to show the ‘Behaviour and Binding’ graphical editor.
2 Display the Bindings list alongside the ‘Behaviour and Bindings’ graphical editor (click on
‘Bindings’ side-tab).
3 Click the Math item in the Bindings list.
A Math Binding box appears on the graphical editor. See Figure 3-9.

Widget Under Test: Pie Chart
Maximum Data Capacity (Gbit/sec) O O

L]

Data Rate (Gbit/sec)

]

Widget is selected

Behaviours

Bindinas

Bindings side-tab

Event

Logical
. Mapped
Math item Math

in Bindings list

Math Binding box
Fig. 3-9: Math Binding

4 Double-click on the Math Binding box.
A Edit Math Binding edit screen is shown. See Figure 3-10.

50

Orbit MapView
User Manual

PieChart-Flat.schx €

Maximum Data Capacity (Gbit/sec)

L]

Data Rate (Gbit/sec)

Edit Max minus Current

Common Properties

Mame: Max minus Current

Operation
Max Data Capacity
Subtract

Current Data Rate

Widget Under Tesg: Pie Chart

Target

Select Result: Available Capacity

Fig. 3-10: Edit Math Binding Screen

5 Inthe Edit Binding screen:

- Set Name to

« Select LHS to be the Behaviour value
+ Set Operator to be
- Select RHS to be the Behaviour value

6 Select Target Result to ‘Create New Local Value’ (check box, see Figure 3-11a)
and a further dialog is shown (Figure 3-11b).

Then set Name to be
and click Create.

Available Capacity

Properties

Width
E
spect Ratio

Permission
Permission Type
Number of Seg
Segment 1
Segment 1

Mame

(411, 71)

Available Capacity

Internal

Max minus Current
Max Data Capacity
subtract
Current Data Rate

The resulting Math Binding settings are shown in Figure 3-12.

r
‘ Select Behaviour
Behavio

Max Data

Current Data Rate

Show directly owned behaviours only.

O show component behaviours.

[Ccreate New Local Value

P e |

(Local Value)
(Local Value)

Fig. 3-11: Select Behaviour Dialogs

.
B Select Behaviour

Mame:

Initial Value: |

Create new 'Local Value' b

Available Capacity

Create

51

Working with Widgets

Setting Up a Test Bench
Edit Max minus Current
Common Properties
Name: Max minus Current
Operation
LHS: Max Data Capacity
Operator:| Subtract
Current Data Rate
Fig. 3-12: Math Binding Settings
7 Click Close.
The resulting graphical editor screen is shown in Figure 3-13.
PieChart-Flat_TEMP.schx € Propertie
TR ETE) | plam T IR RErS (411, 71)
\
Data Rate (Gbit/sc)
Width
Height
Behaviour Permission Type
Number of Segment:
Segment 1
Segment 1
Segment 2 V
Segment 2 Color
Name Available Capacity
Initial Value
Scope Internal
Bindings
Behaviour values

Local Value Behaviour holds the
Math Binding at widget-level ‘available data capacity"

Fig. 3-13: Math Binding Set Up to Calculate ‘Available Data Capacity’

at screen-level

A Math Binding is now set up to compute the Available Capacity (i.e. the difference between
the ‘Max Data Capacity’ and ‘Current Data Rate’), which is held in a new ‘Local Value’Behaviour.

The Math Binding is associated with the instance of the selected Pie Chart widget.
The Math Binding is at widget-level on the screen.
The Math Binding uses two Behaviour values which are defined at screen-level.

Note: The scope of a Behaviour or Binding or variable is either:
« screen-level; or
« component-level; or
- widget-level.

52

Orbit MapView
User Manual

Bind ‘Widget Under Test’ to Stimulus Values

The ‘Current Data Rate’and ‘Available Data Capacity’ data values are ready to be connected to
the Pie Chart widget.

1 Select the Pie Chart on the test bench screen

and click the ‘Edit Behaviours'icon to show the ‘Behaviour and Binding’ graphical editor.
See Figure 3-14.

B My_C&M_PieChart

(4]
Project

File Edit Project View Tools Window

PieChart-Flat_TEMP.schx

Maximum Data Capacity (Gbit/sec)

Data Rate (Gbit/sec)

Behaviou

All
Command Line

ntrol Screen
Local Timer
Local

Bindings

RollCall Control and Monitoring jControl Help

Widget Under 'les'g‘: Pie Chart

Properties

Width
Height

Initial Value

Scope

Fig. 3-14: Pie Chart Selected, ‘Behaviour and Binding’ Graphical Editor Shown

(411, 71)
411

Available Capacity

Internal

There are two properties of the Pie Chart widget that we need to connect (bind) to:

‘Segment 1 Value’and ‘Segment 2Value' Do this with Property Bindings:

2 Click the ‘Property’item in the Bindings list twice to add two Property Bindings to the

graphical editor. See Figure 3-15.

Behaviours

Bindinas

Direct
Event
Logical
Mapped
Math

Fig. 3-15: Two New Property Bindings

53

Working with Widgets
Setting Up a Test Bench

Now configure each Property Binding:

3 Double-click on one of the Property Bindings.
The Edit Binding screen is shown. See Figure 3-16a.

Edit Segment 1 Value Property

Common Properties
Name: Segment 1 Value Property

Source Behaviour: Current Data Rate

Property to bind: |Segment 1 Value
Bind Rules: Operator Expression

Default

Move Down Mave Up A Delete

a) Edit segment 1

Edit Segment 2 Value Property
Commeon Properties
Name: Segment 2 Value Prnper‘tﬂ
Source Behaviour: Available Capacity
Property to bind: | Segment 2 Value
Bind Rules: Operator Expression Result

Default

Move Down Maove Up A Delete

b) Edit segment 2
Fig. 3-16: Edit Property Binding Screens

4 In the Edit Binding screen, set the following:

Name Segment 1 Value Property
Source Behaviour Current Data Rate

Property to Bind Segment 1 Value

And click Add.
5 Click Close.
This has bound the ‘Current Data Rate’ Behaviour value to the Pie Chart widget's ‘Segment 1
Value' property.
6 Double-click on the other Property Binding and it its Edit Binding screen (Figure 3-16b),
set the following:
Name Segment 2 Value Property
Source Behaviour Available Capacity

Property to Bind Segment 2 Value

And click Add.

54

Orbit MapView
User Manual

7 Click Close.
8 Click Save.
This has bound the ‘Available Capacity’ Behaviour value to the Pie Chart widget's ‘Segment 2

Value’ property. Figure 3-17 shows the resulting Pie Chart ‘Behaviour and Binding’ graphical
editor.

¥ My_CBM _PieChart = | B)
File Edit Project View Tools Window RollCall Control and Monitoring iControl Help
© 50%
Project X PieChart-Flat.schx € Properti

Widget Under Test: Pie Chart
Maximum Data Capacity (Ghit/sec) e nl © (411, 71)

|: X 411
Data Rate (Gbit/sec)

L]

m

Default

PieChart-

'Available Data Capacity’ value .

Behaviours

Command Line

Pie .scho
Pie 3

PieChart-Flat.schx

ble Capacity
Initial Value

Scope Internal

‘Current Data Rate’ value

Bindings

° B plarm List ®

Logged in: admin

Fig. 3-17: ‘Current Data Rate’ and “Available Data Capacity’ Data Values Bound to Pie Chart Widget

55

Working with Widgets
Setting Up a Test Bench

Exercise the ‘Widget Under Test’ with Test Bench

Using the test bench screen from Bind ‘Widget Under Test' to Stimulus Values, on page 53, the
Pie Chart widget can be exercised:

1 Select the Pie Chart widget.
The Behaviours and Bindings for the Pie Chart widget are shown. See Figure 3-18.

Test Behaviours and Bindings button

Widget Under Test: Pie Chart
Maximum Data Capadty (Gbit/sec) !

L]

Data Rate (Ghit/sec)

(411, 71)

Behaviours Permission ..

Number
Segment
Segment 1 ..

ilable Capacity

Initial Value
Scope Internal

Bindings

Fig. 3-18: Behaviours and Bindings for the Pie Chart Widget on Test Bench Screen

2 Click the Test button.

Orbit enters ‘Test’ mode and allows the widget to be exercised. The the Behaviour and
Binding values can be seen in the graphical editor. See Figure 3-19a.

3 Enter values into the Text Edit widgets on the test bench screen to exercise the Pie Chart
widget. See Figure 3-19a and b.

56

Orbit MapView
User Manual

Values entered into the Text Edit widgets providing stimulus to the Pie Chart widget

Widget Under Test: Pie Chart

Behaviours

Local Timer
Local Value
VIV-Flex Control

Text Edit widgets are
Values passed to the

Pie Chart widget.

Bindings

a) Max Data Capacity = 300; Data rate = 20.

Widget Under Test: Pie Chart
Maximum Data Capacity (Gbit/sec)

Data Rate (Gbitjsac)

Behaviours

nand Line

itrol Screen
Local Timer
Local Value
ex Control

Bindings

b) Max Data Capacity = 300; Data rate = 240.
Fig. 3-19: Exercising the Pie Chart Widget, ‘Max Data Capacity’ and ‘Data Rate’: a) 300, 20; b) 300, 240.

To finish exercising the Pie Chart widget:

4 Click the Test button again.
Orbit re-enters ‘Design Mode’and allows the user to edit screens etc.

5 Click Save.

57

Working with Widgets
Extend Widget Functionality with Behaviours and Bindings

Extend Widget Functionality with Behaviours and Bindings

The functionality of a widget can be extended with Behaviours and Bindings. The example of
Setting Up a Test Bench, on page 46, is extended here.

For our Pie Chart widget example, Behaviours and Bindings could be used to:
- work out the data capacity used as a fraction of the maximum; and then
- cause a Pie Chart segment to change color if data capacity exceeds some threshold
amount.
The following are covered in this sub-section:
+ Adding Extra Functionality, on page 58; and
« Exercising the Extra Functionality, on page 61.

Adding Extra Functionality

Using the test bench screen of Exercise the ‘Widget Under Test’ with Test Bench, on page 56:

1 Select the Pie Chart on the test bench screen.
And click the Edit Behaviours icon to show the ‘Behaviour and Binding’ graphical editor.

2 Add a Math Binding box by clicking on the Math item in the Bindings list.
And double-click on this box to show the Math Binding edit screen. See Figure 3-20.

‘ Select Behaviour l P S

Details:

Create new 'Local Value' bi

Name: Fraction Used|

Initial Value:

Select > Create New Local Value

Edit Calc Fraction used

Common Properties

Name: Calc Fraction used

Operation Target

LHS: Current Data Rate Result: Fraction Used

Operator: | Divide

RH5: Max Data Capacity

Fig. 3-20: Math Binding Edit Screen

3 Configure the Math Binding as shown in Figure 3-20.
This sets up the Binding:

+ re-names the Math Binding box to ‘Calc Fraction used’;

« configures a ‘Current Data Rate’ divided by the ‘Maximum data rate’ calculation; and

« instructs to place the result in a (new Local Value) Behaviour called ‘Fraction Used’.
4 Click Close.

58

Orbit MapView
User Manual

5 Add a Logic Binding.
And double-click on it to show the Logic Binding edit screen. See Figure 3-21.

Edit If exceeds

Common Properties

Name: If exceeds

Logical Operator: |AND =
LHS Type LHS Behaviour LHS Value Operator RHS Type RHS Behaviour RHS Value
Behaviour Fraction Used Value Greater Than Literal Add

Delete
Result: Target:
True Result: | Literal - #ff2200 O widget

sult: [iaral ~ | #0055fF ® Behaviour: Calculated Segment Color Select

Fig. 3-21: Logic Binding Edit Screen

6 Configure the Logic Binding as shown in Figure 3-21.
This:
+ re-names the Logic Binding box to ‘If exceeds’;
- works out if ‘Fraction Used’is greater than 0.9;

+ generates a result based on the comparison (if fraction > 0.9, result = ‘#{f2200’,
else = ‘#0055ff"); and

+ places the result in a (new) Local Value Behaviour called ‘Calculated Segment Color.

Note: ‘#ff2200"and ‘#0055ff' represent color RGB values.

7 Click Close.

8 Add a Property Binding.
And double-click on it to show the Property Binding edit screen. See Figure 3-22.

Edit Segment 1 color property
Commeon Properties
Name: Segment 1 color property

Source Behaviour: Calculated Segment Color

Property to bind: | Segment 1 Color
Operator Expression

Default

Move Down Move Up A Delete

Close

Fig. 3-22: Property Binding Edit Screen

9 Configure the Property Binding as shown in Figure 3-22.
This:

59

Working with Widgets
Extend Widget Functionality with Behaviours and Bindings

« re-names the Property Binding box to ‘Segment 1 color property’;
« uses a data value from the Behaviour ‘Calculated Segment Color’;

« binds this value to the (Pie Chart widget's) ‘Segment 1 Color’ property; and
« adds this to the Binding’s bind rules.

10 Click Close.

11 Click Save.

The resulting ‘behind-the-scenes’ logic is shown in the ‘Behaviour and Bindings’ graphical
editor. See Figure 3-23.

Fig. 3-23: Behaviour and Bindings defining ‘behind-the-scenes’ Logic

Note: This extended functionality for our Pie Chart widget may be moved
into a component for easy re-use on other screens.

60

Orbit MapView
User Manual

Exercising the Extra Functionality

1 Click the Test button to test the Pie Chart widget. See Figure 3-24,
2 Enter values in the Text Edit widgets of the test bench screen.

Widget Under Test: Pie Chart
Maximum Data Capacity (Gbit/sec) etz . Test button

Data Rate (Gbit/sec)

Behaviours

All
Command Line

Local Value

MV-Flex Control
SN Get
SNMP Set

a) Max Data Capacity = 300; Data Rate = 200

. ; i ‘Widget Under Test: Pie Chart
Maximum Data Capadity (Ghit/sec)

Data Rate (Gbit/sec)

Pie Chart segment color change

Behaviours

All
Command Line

oad Control Scr
Local Timer
Local Value
MV-Flex Control
Fing

b) Data Rate = 280

Fig. 3-24: Exercising Pie Chart Segment Color Change

61

Working with Widgets
Monitoring by Exception

Monitoring by Exception

The Monitoring by Exception (MbyE) widget is used to summarily highlight system errorsto a
user, easing the task of monitoring an abundance of status information. The MbyE widget can
be configured to only show certain state overview information and in an ordered way.

The MbyE widget is configured with one or more ‘MbyE overviews' The widget can handle a
mixture of the following overview modes:

+ Schematic MbyE monitoring.

The Schematic MbyE overview monitors the aggregate state of a MapView screen.
Only the state of alarms on the screen are monitored: The state of any further ‘linked-
to’screens are not monitored. (A screen may contain links to other screens - allowing a
user to navigate down to further detail - but these links do not contribute to its ‘MbyE
overview'state.)

Each Schematic MbyE overview is typically configured with a screen which contains
alarms for all Log Fields and devices to be monitored. All devices and log fields for a
particular system function may be assembled on a screen, for example, for a channel
overview application.

The overview is configured with a unique, user-defined RollCall address, and with a link
to the screen containing all alarms etc to monitor.

« Device MbyE monitoring.

The Device MbyE overview monitors the state of an individual device. The overview is
configured with the RollCall address of the device being monitored. A link to a screen
may still be added but it is not part of the ‘Device MbyE'monitoring - for example, such
a link may just be used to obtain information about a device.

Monitoring by Exception (MbyE) Widget

62

Figure 3-25 shows the Monitoring by Exception (MbyE) widget on-screen. It displays icons for
each Orbit MapView screen it is monitoring.

Fig. 3-25: Monitoring by Exception Widget

Figure 3-26 shows the widget after it has been dragged onto a screen and then configured,
before it is running in Orbit.

Orbit MapView
User Manual

Unconfigured MbyE widget

Exception Monitoring

a) Drag a Monitor by Exception Widget onto a screen schematic

MbyE overview icons

Priority: 1 1000:E0:01 | Priority: 2 1000:E0:07 | Priority: 6 1000:E0:05 | Priority:

7 1000:D0:08 | Priority: 8 1000:E0:08
My
- My Dev 8 (Dev MbyE) | || My Dev 8 (Sch MbyE)

b) Example Configured Monitor by Exception Widget

Fig. 3-26: Monitoring by Exception Widget:
a) After being dragged on screen.
b) After configuration (but before being run in Orbit)

Configuration of the MbyE widget is done via the Properties box. See Figure 3-27.

63

Working with Widgets
Monitoring by Exception

Properties

Width
Height
Aspect Ratio Custom

Default *

0.00
<inherit=
Disabled

Configure screens to be monitored

Clear Button Color #0000fF
Clear Button Text C.. [#et
Height/Widt 400

10w Address v True
Show Priority v True
Show Timestamp v True

Set widget options for display and

Fil Color B #a0a0a4)
display order
Priority
Date (MNewest First)
0
Enable Latching False
rientation Horizontal

Fo
Font Size 16

Fig. 3-27: MbyE Widget Properties Box

Table 3-1: MbyE Widget Configuration Properties

Configuration Property Description

Item Configuration Click the icon to show the configuration dialog.

See Configuration Dialog of the MbyE Widget, on page 66.

Display Options: See Figure 3-28, MbyE Overview Icon.

Show Address Check box.
Select to show RollCall Address on widget.

Show Priority Check box.
Select to show priority setting on widget.

Show Timestamp Check box.
Select to show timestamp on widget.

64

Orbit MapView
User Manual

Table 3-1: MbyE Widget Configuration Properties (continued)

Configuration Property

Description

Sort/Filter Options:
Primary Sort Order

Secondary Sort
Order

Hide Below State

Enable Latching

Drop down box.
Select the order in which icons are shown on the MbyE widget.
Option:

« Priority - In priority order, lowest priority shown left-most.
Priority is set in the Configuration Dialog of the MbyE
Widget, on page 66.

- Date (Newest First) - Display newest alarm condition left-
most.

- Date (Oldest First) - Display oldest alarm condition left-
most.

. State - ‘State’value of the alarm condition order.
« Address - Address order.
Drop down box.

Select secondary icon ordering.
Options are the same as the Primary Sort Order.

Text box.

Enter a numeric state value. (0 to 100, see State Value 0 to 100,
on page 17.)

Select the threshold alarm state value below which icons are
not shown on the widget.

(Alarm state:
0 = masked;
1=0K;
50 =Warning;
100 = Error)
For example:
« =50, shows unacknowledged ‘Warnings’and all ‘Failures’

+ =0, show all icons.
Check box.

Select to latch the alarm shown in the widget.

Priority

Address

Priority: 1 1000:E0:01

[Elta Display Image

My Delta

Wed Out 31 12:01:37 2018 GMT

Title

Fig. 3-28: MbyE Overview Icon

Timestamp

65

Working with Widgets
Monitoring by Exception

Configuration Dialog of the MbyE Widget

Open the Monitor by Exception widget configuration dialog by clicking the l icon for the
‘Item Configuration’ property. See Figure 3-29.
The configuration dialog shows a row of settings for each MbyE item.

B orbit

Priority ¥ Address Title
(Sch MbyE)
1000:D0:08 (Dev MbyE)
1000:E0:05 My X¥Z (Sch MbyE)
1000:E0:07 My Sport Chan

My Dela

Display Image Link Use Link State

/schematics/My_One-Device.schx

fimages/My_XYZ.png [schematics/My_Many-LogFields.schx

fimages/My Sport.png J/schematics/My_One-Device.schx

fimages/M [schematics/My_Many-Devices.schx

Cancel

Dialog shows a row of configuration settings for each MbyE item.

Fig. 3-29: Monitoring by Exception Widget Configuration Dialog

Table 3-2: MbyE Widget Configuration Properties

Configuration Item

Description

Priority Set a priority number.
Lower numbers are displayed left-most in the widget when the
Orbit project in running.

Address RollCall address to be used for the Schematic MbyE overview.

Title Name to appear on the MbyE overview icon.

Display Image Image (in the Orbit MapView project) to show on the MbyE
overview icon.

Link Screen (in the Orbit MapView project) to go to when MbyE

overview icon is clicked.

66

Orbit MapView
User Manual

Table 3-2: MbyE Widget Configuration Properties (continued)

Configuration Item

Description

Use Link State

Check box.

The MbyE widget is on a screen and the overall ‘Link State’ of
the screen has contributions from all of the screen widgets etc,,
including from each MbyE item.

+ True - MbyE item is used in overall screen ‘State’
(l.e. the ‘Link State’ of the ‘Linked-to’ screen/device is used.)

« False - MbyE item is not used in the overall screen ‘State’
(l.e. the ‘Link State’ of the ‘Linked-to’ screen/device is not
used.)

Note: The Use Link State setting can be set to False if the MbyE
widget is on some banner tool bar which should not contribute
to the ‘Link State’ of the screen.

Variables

Button.

With an MbyE item selected, click the Variables button
to display a Schematic Variable Settings dialog.
See Figure 3-30.

In the dialog, set values of schematic variables for the ‘linked-to’
screen. Typically, the variables include the addresses of all
devices being monitored by the MbyE overview.

67

Working with Widgets
Monitoring by Exception

Select item, click Variables button

Display Image Link Use Link S

Jschematic One-Device.schx true

1000:E0:05 My) fimages/M: Z.png /schematics/My_Many-LogFields.schx
1000:E0:07 C Jimages/My Sport.png /s nati y_One-Device.schx

My Delta fimages/My_Delta.png /schematics/My_Many-Devices.schx

Duplicate Add Delete

Opens the Variables configuration dialog allowing the schematic link variables to be configured (valid when selected item has a |

Value

Addr_1
Addr_2
Addr_3
Addr_4
Addr_5
Addr_s

Fig. 3-30: Schematic Variables Settings Dialog

Monitoring by Exception Example

68

See Example - Monitoring by Exception, on page 291.

Orbit MapView
User Manual

Auto-Fill Property Values
Orbit contains an Auto-Fill facility for use on graphical schematics to set up or configure many
widget or component properties at the same time.

AutoFill button

Auto Fill
° = Alarm List ®» o
Logged in: admin
Fig. 3-31:
Auto-Fill can:

- Set properties to string values in some numerical sequence.
For example, “SRC 01, “SRC 02", “SRCO3", etc.
+ Range over variables whose names are in some numerical sequence and set the variables’

values.
For example, “Caption 1% “Caption 2" etc.

Auto-Fill Example 1: Set a Single Property across Multiple Widgets

In this example, Auto-Fill is used on a single property of multiple widgets. 16 button widgets
arranged in a 4 x 4 grid on an Orbit screen are used. See Figure 3-32. This example will re-label
the ‘Caption’ property of all the buttons to be “Src 1" “Src 2",...,“Src 16"

To Re-label the Buttons using Auto-Fill

1 Select all the buttons on the screen.
2 Click the Auto-Fill icon to show the Auto-Fill dialog. See Figure 3-32.

69

Working with Widgets
Auto-Fill Property Values

My_AutoFill_Egl_TEMP.schx &

Auto-Fill example 1 [¥ Auto Fil (.2) |

Property

z
EI

Group: | Style

Name: Caption

£
IEI

Numeric Increment

Start Value: 1

Increment After: 1 widget(s)

iy

k5!
HEE
L

Increment By: 1

Orientation

@ Horizontal QO Vertical

String Value

Value: Src %d

Cancel

Fig. 3-32: Auto-Fill Dialog

3 In the Auto-Fill dialog:
a Set property Name to ‘Caption.
b Leave the Numeric Increment values all set to ‘1"
¢ Leave Orientation set to ‘Horizontal’.
d Inthe String Value text box, enter: Src %d
4 Click OK.

The buttons are then all re-labeled left-to-right, top-to-bottom: A number sequence starting
from ‘1"and incrementing by ‘1'is used. The result is shown in Figure 3-33.

Src 1 Src 2 Src 3 Src 4
Src 5 Src 6 src 7 Src 8
Src 9 Src 10 Sre 11 Src 12
Src 13 Src 14 Src 15 Src 16

Fig. 3-33: Re-Labeled Buttons

Numeric Increments and Orientation

Setting the Numeric Increment values (Start Value, Increment After, and Increment By)
affects the numbering sequence used in Auto-Fill. See Figure 3-34a, b and c.

Setting Orientation to ‘Vertical’ will re-label top-to-bottom first. See Figure 3-34d.

70

Orbit MapView

User Manual
11 12 13 14 1 1 1 . 1
15 16 17 18 2 2 2 2
19 20 21 22 3 3 3 <
23 24 25, 26 4 4 4 4
a) StartValue =11 b) Increment After = 4
10 20 30 40 1 5 9 13
50 60 70 80 2 6 10 14
90 100 110 120 3 7 ! 11 15
130 140 150 160 4 8 12 16
¢) Increment By = 10 and Start Value =10 d) Orientation = ‘Vertical’

Fig. 3-34: Other Auto-Filled Button Labels

Format Syntax of a String Value

The “%d" item entered in the String Value text box in the above example is a special format
syntax which enables an incrementing value to be used in the Auto-Fill operation. Table 3-3
lists other format syntaxes that may be used.

Table 3-3: Format Syntax

Format Syntax

Example Incrementing Sequence

Decimal:
%d 1,2,3,4,5,..9,10,11,12,13,...
%02d 01,02, 03,...
%03d 001, 002, 003,...

Hexadecimal:
%X 1,2,3,..9,A,B,C,D,E F 10,11,12,...
%X 1,2,3,..9,a,b,¢,def,10,11,12,..
9%02X 01,02, 03,... OE, OF, 10, 11, 12,...

71

Working with Widgets
Auto-Fill Property Values

Auto-Fill Example 2: Set Multiple Variables on a Single Widget/Component

72

The Auto-Fill facility is normally used on a single property item from multiple widgets but it
also works on multiple items from a single widget or component. A common use-case is a
component with multiple, similarly-named variables - Auto-Fill can set these up.

This example uses a component containing some text labels whose ‘Caption’ properties have
been linked to component variables. The component is shown in Figure 3-35 and all the
component variables are shown in the Variables dialog of Figure 3-36. (Right-click in the
component background with nothing selected and select ‘Variables... in the context menu.)

Label widget 2:
‘Caption’ property is set
to be value of component variable, {Caption-2}.

B My_C&M_Project =8| ® |

File Edit Project View Tools Window RollCall Control and Monitorifg [Control Help

o Scale (194% ~

Project

Default *

Network View

o B larm List ® o

Logged in: admin

Fig. 3-35: Example Component ‘My-Component’

"

{} Variables (2] = |
Name Type Value
Caption-1 String
Caption-2 String
Caption-3 String
Caption-4 String

Caption-5 String

Filter: New M M) Delete

oK

L

Fig. 3-36: Example Component Variables

Orbit MapView
User Manual

Once a component is made, it may be used on screen(s) one or more times. Figure 3-37 shows
a newly-placed component on a screen and the component variables that are available.

Instance of ‘My-Component’ used on a screen

Variables of ‘My-Component’

‘ My_C8M_Project = B e -

File Edit Project View Tools Window RollCall Control and Monitoring idontrol Help

X My_AutoFill_Eg2.schx &

Auto-Fill example 2

An instance of component My-Ccmponent:

ission Type

Network View

[3 I SE R KR

! Alarm List

Logged in: admin

Fig. 3-37: My-Component on a Screen Schematic

To Set Component Variables
1 Select the component on the screen schematic.
2 Click the Auto-Fill icon to show the Auto-Fill dialog.

3 Select the ‘Group’setting to be ‘Variables’ and set other dialog values to those shown in
Figure 3-38.

73

Working with Widgets
Auto-Fill Property Values

B Auto Fill [[l

Property Set the following in the dialog:

Table 3-4.

Property:
Numeric Increment G V . bl
rou ariaples

Start Value: 1 p
Increment After: widget(s) Name Caption-%d
Increment By: 1 Strlng Value,
orientefon Value Channel %d

® Horizontal O vertical
String Value

N

Valfe: Channel %d

Cancel

Fig. 3-38: Auto-Fill Dialog Settings

4 Click OK.

The variables of the component are filled out with ‘Channel 1;'Channel 2, etc.
And widget properties linked to component variables reflect these component variable values.
See Figure 3-39.

1 |Channel 1
2 Channel 2
3 [Channel 3

4 |Channel 4

5 |Channel 5

Fig. 3-39: ‘My-Component’ Changed via Auto-Fill

74

Orbit MapView
User Manual

Viewing Log Messages (Alarm List Widget)

Introduction

Log messages can be viewed on an Orbit MapView control and monitoring screen, oron a
multiviewer video wall. Live messages can be viewed via an Orbit MapView Monitoring Service,
or logged messages can be viewed via an Orbit MapView Recording Service. Displayed
messages can be simply filtered at the widget.

CHAN_001 M

Log Fied

Fig. 3-40: Log Messages Displayed on MapView Screen

Note: PCsrunning Orbit MapView Client(s) or multiviewer device(s) must be
on the same network as the Orbit MapView services.

Note: Orbit MapView MapView projects or Orbit MapView Multiviewer
projects must be on the same RollCall+ domain as the Orbit MapView

services.
System
Devices
Log messages on RollCall+ network
Orbit services running) o
on server PC Recording Monitoring
Service Service

Log messages from service for widget

—

Log File set
=3

Select source of log messages for widget
with the widget ‘s ‘Connect to’ property.

Alarm List
Widget
Running on a client PC Orbit MapView MapView project with an Alarm List
widget
Screen

Fig. 3-41: Log Messages for Alarm List Widget

75

Working with Widgets
Viewing Log Messages (Alarm List Widget)

Alarm List Widget

The Alarm List widget is a table-list widget which displays a historical list of log messages,

including alarms. It can be placed onto Orbit MapView screens and onto MV-8 Series
Multiviewer video walls with Orbit projects.

The widget may be connected to:
- an Orbit MapView Monitoring Service (for “live” log data); or to
- an Orbit MapView Recording Service's log files (for historical logged data).

IMPORTANT:

The Publish to Alarm Widget setting must be enabled within the Log File

configuration of the Recording Service for the Alarm List widget to connect
correctly to a Recording Service.

Unit Name
Tim Test
lim Test

WARN: Blar
50

Fig. 3-42: Alarm List Widget

Using an Alarm List Widget in Orbit MapView

1 Run the Orbit MapView Client software and open/create a ‘control and monitoring’ (C&M)
project.

Set up RollCall+ Domain:

2 Click ‘Control and Monitoring' > Properties in the main menu.
The Properties dialog is shown. See Figure 3-43.

B Properties ? X

RollCall

RollCall+ domain number

Domain: PS5

Current Home

Current Theme

[themes/Default.theme

Fig. 3-43: Control and Monitoring > Properties Dialog

3 Enter the RollCall+ domain number.

Note: RollCall+ domain must be the same as the Orbit Services being connected to.
4 Click OK.

76

Orbit MapView
User Manual

Add an Alarm List widget:
5 Open an Orbit MapView MapView control and monitoring project and enter ‘Design Mode',
6 Place an Alarm List widget onto a MapView screen. See Figure 3-44,

My_Alarm_List.schx €

Default

Connect To Monitoring Service

Extended Style

. - Alarm List Widget Properties|
Alarm List Widget placed on screen

Click on Alarm List Widget icon to place widget on screen

Alarm List Logged in: admin

Fig. 3-44: Alarm List Widget Added to MapView Screen

Configure the widget:
To select which data source to connect to:
7 Set the widget's ‘Connect To’ property to:
+ ‘Monitoring Service’- for live log message data; or to
+ 'Recording Service’- to view data that is already logged.

Connect To oring Service

Recording Service

8 If ‘Recording Service'is selected,
then one or more sets of logged data will be available. The required data set name (log file
configuration identifier) must be entered in the ‘Identifier’ property.
Thus, in the ‘Identifier’ property,
enter the name of the Log File configuration set up in the Recording Service.
Note: Use the same identifier name as used in the Recording Service.
9 Click Save File.

10 Click Save Project.
The Alarm List widget has been set up.

77

Working with Widgets
Viewing Log Messages (Alarm List Widget)

IMPORTANT:

The Publish to Alarm Widget setting must be enabled within the Log File
configuration of the Recording Service for the widget to connect correctly to
a Recording Service.

Recording Service Checks:

If connecting to a Recording Service:
11 Access the Recording Service web page and view the required Log File configuration.
12 check the following settings:
- Enable this log file - Set to ‘Yes'.
» Recording Mode - Set to ‘Everything’ (to record all messages’, or is set to ‘Alarms Only’

to record alarm messages only.
Note: This setting affects what may be seen by any connected Alarm List widgets.

- Identifier - Check that the identifier name configured for the widget is correct.

Exercise the widget:

13 Click the ‘Run Mode’icon to enter ‘Run Mode".
The MapView project runs and the Alarm List widget is connected to the data source
configured. Log messages scroll down the table, the most recent messages at the top.

Most recent messages at top.
Messages scroll down in the table as new messages are added.

Log Field i Value
INPUT_2_SDI_ERRCNT W 3241:06:01 :IQMIX00 WARN:TPG

INPUT_2_SDI_ERRCNT

INPUT_3_SDI_ERRCNT

INPUT_2_SDI_ERRCNT 3251:08:05 05:IQMIX00 WARN:TPG

INPUT_4_SDI_ERRCNT 05:1QMIX00

INPUT_2_SDI_ERRCNT

INPUT_3_SDI_ERRCNT

INPUT_2_SDI_ERRCNT Wi 3241:06:01 01:IQMIX00 WARN:TPG

INPUT_3_SDI_ERRCNT W: 3251:08:01 01:IQMIX00 WARN:TPG

Footer, may be disabled with the ‘Display Footer’' property.
Fig. 3-45: Log Messages in Alarm List

Log messages are color-coded: [N (Gl A glel etc.

78

Orbit MapView
User Manual

Alarm List Widget Features

Navigating the List

Most recent messages are added into the top of the list, so the log messages are always auto-
scrolling down the screen.

Users can scroll up/down the list by dragging/flicking inside the widget table. This will
temporarily disable the auto-scroll, which will be re-enabled after 5 seconds.

Alarm List Widget History Depth
Alarm List widgets are limited to 200 entry items (i.e. 200 table rows maximum).

For widgets connected to a Recording Service, this depth is maintained server-side. This means
that even late-joining widgets will see the previous 200 entries.

Widget Columns

Date/Time - Date and time of the log message.

Log Field - Log message type. For example, input SDI error count, voltage reading,
status message.

Alarm - Alarm state: OK, Warning, Fail.
Address - RollCall address of source of message.
Unit Name - Namer of the device.

Value - Value associated with
message.

Log Field Unit Name

INPUT_3_SDI_ERRCNT
INPUT_2_SDI_ERR

Fig. 3-46: Alarm List Widget Columns

Widget Controls

INPUT_SDI_ERRCNT Warn
INPUT_2_SDI_ER Warn

INPUT RC Warn
NPUT 2 SD 20

/ -
I|l s) M
Clear except Fail

Fig. 3-47: Alarm List Widget Controls

79

Working with Widgets

Viewing Log Messages (Alarm List Widget)

80

Table 3-5: Alarm List Widget Controls

Setting Description

Clear All Button.
Click to clear Alarm List of all messages.

Clear except Fail Button.
Click to clear Alarm List of all messages except fail/error messages.

Note:
Clearing Alarm Lists:
When clicking Clear All or Clear except Fail, a system ‘clear’command is
sent to the service which the Alarm List widget is connected to.
When connected to:
+ Recording Service - all Alarm List widgets viewing that recorded
log file data are cleared.
And the system ‘clear’ command itself is also recorded in the log file.
+ Monitoring Service (“live” data) - only the local Alarm List widget is
cleared.

Some Widget Properties

The appearance and style of the widget is configurable via property values, like other Orbit
MapView widgets. The properties are listed in Figure 3-48.

The ‘Display Footer’ properties enables the table footer to be hidden from display.

The ‘Hide Below State’ property enables some simple filtering of displayed messages on a
widget-by widget basis. Log messages can be hidden when they are below a threshold State

Value.

Orbit MapView
User Manual

Properties

Dim

Fill

Fill Color

Title Background ...
Footer Backgroun...

Font

Title Font Color

Title Fon

Row Fon

Header Font

Header Font C
Fil i

ner Radius
Border Thick
Border Color

(0, 0)

0

0

1907 x 1068

Customn

Default

Monitoring Service

Alarm View
v True
W =fo0
2

#404040
00

Fig. 3-48: Alarm List Widget Properties

Connect To - Select source of log message
data.

Identifier - for Recording Service sources,
select log data.

Display Footer - enables/disables display of
the table footer row.

Hide Below State - Disables display of log
message with State Value below a set value.

(0 = Masked,

1=0K,

49=Acknowledged warning,
50=Warning,

99 = acknowledged Fail/error,
100=Fail/Error)

Caution: This setting can hide log messages
from view.

81

Working with Widgets
Viewing Log Messages (Alarm List Widget)

82

4 Components and Variables

Summary

Components and Variables

THE COMPONENT .coeeeeeestesrerrrrirsiessessnsssssessssssssessessasssssssssssassssssessssassssstessassssssssssssassassanns page 84
Creating a New COMPONENT.oonn et et aennes page 84
Using a Component On aSCreeno.unenueueii et iaaeaenns page 85

Variables in Orbit page 86
Create aVariableo ie e e e page 86
Create a Variable from a Property Value.cciiiiiiiiiinniiiiiinneen. page 86
View Variables/Set Variable Values.ouuieiiiiiiiiiiiiiiiainnnnnn. page 88
Use a Variable in a Property Value.o.uueuieiiiniiiiniiiniiinneninns page 88
Enter a Variable Directly into a StringValuec.coooiiiiiiiiiiiniinna.. page 90

Placing Functionality Inside a Component page 91
Create New COMPONENT ettt ettt et ettt ittt eeeaeaenenns page 92
Connect Widget-Level Bindings to Component Variables page 93
Exercise the COMPONENTou. ettt ettt ettt et ieeeeeans page 103

Using Component Variables page 105
Linking Component Variables to Widget Property Values page 105
Setting Component Property Values at Screen-Level....................cccoeee... page 107

Component with Multiple Variables page 108
Creating New COMPONENTo.unen ettt page 108
Creating Multiple Component Variables.cccovieiiiiiiiiiiiiiiiin.. page 108
Linking Component Variables to Widget Properties..................cccoviveun.... page 110
Using a Component with Multiple Variables..................cccoviiiiiiiiiiiinn.. page 112

Binding to Component Behaviour Values..............ueeeeecrsresrenenn. page 114
Example - Controlling Component Visibilitycccuveieeiiiiiiiineiannnn. page 114
Using the Component on @ SCreenuuueeuieeeuin e eieeeiineenineennns page 119

Components are used to hold graphical widgets and Behaviours and Bindings. They can be
used many times over on a screen.

Components:

« contain graphical widgets, in a similar way to ‘Tiles’ when using Orbit for Multiviewer
applications;

- are edited in the usual Orbit graphical editor;
- can hold Behaviours/Bindings and variables in a similar way to screens; and

+ can be used many times over on Orbit MapView screens (similar to Orbit ‘Tiles’ on Orbit
multiviewer ‘Walls’); and

- are typically used in Orbit MapView screens where there is re-use of graphical layouts.

83

Components and Variables
The Component

The Component

Creating a New Component

1 Right-click on the ‘components’item in the Project View pane of the Orbit MapView
screen.
And select New Component.

2 Enter a component Name in the dialog and click OK.
A new, blank component sheet is opened in the graphical editor.

3 Check that you are in ‘Design Mode’ in Orbit.
(See Orbit Design Mode and Run Mode, on page 32.)

4 Add widgets to the component sheet to form your new component.

The example shown in Figure 4-1 (new component ‘My-Video’) contains:
a 'Video' widget overlaid with an ‘Audio Bars’ widget, all above a ‘UMD’ widget with a
‘Label’ widget providing header text.

5 Click Save.

The component has been created and is represented in the Project View.

Component ‘My-Video’in schematic editor

Component ‘My-Video’in Project View

¥ My_CaM_Project =

File Edit Project View Toolf Window RollCall Control and Monitoring [Control Help

L
Project

Default *

udio Label

Network View = Extended Style

B Alarm List ® :

Logged in: admin

Fig. 4-1: Component ‘My-Video’

84

Orbit MapView
User Manual

Using a Component on a Screen

The new component ‘My-Video’ may now be used on an Orbit MapView screen
1 Open a screen schematic.
2 Set Orbit to ‘Design Mode’.

(Toggle modes with the ‘Design/Run mode’ main menu bar icon, see Orbit Design Mode
and Run Mode, on page 32.).

3 In the Project View pane,
expand the ‘components’item and select the ‘My-Video’ component.

4 Drag the component onto the screen. See Figure 4-2.

-
B My C&M Project
File Edit Project View Tools Window RollCall Control and Monitoring iControl Help
o Scale (28%)

Project ¥ X A-Schematic.schx €

My_C&M_PieChart
1_Project

l components

Viy-Component. cpix

My-Video.cpix

New-Component.cpix

test-new.cpix

l panels

Fig. 4-2: Drag Component onto Screen Schematic

The component may be used on a screen one or more times. See Figure 4-3.

A component may also be placed into another component.

Channel Labsl Channel Label

Fig. 4-3: Several Instances of Component ‘My-Video’

It is useful to be able to re-use a component, but, at the moment in Figure 4-3, the ‘Channel
Label’and ‘Audio Label’ text on the ‘My-Video’ component are fixed. This is because we have
not linked any Label widget caption properties to any component variables at the screen-level.

85

Components and Variables
Variables in Orbit

Variables in Orbit

Variables can be set up in screen or component schematics. These can hold values which are
defined at a higher level on the Orbit MapView screen or at run time. Variables are useful and
can be used to set property values to common settings.

Create a Variable

To create and define a variable on a screen or components:

- Right-click in the background of a screen or component schematic
and select ‘Variables...’

The Variables dialog is shown, showing variables of the schematic. See Figure 4-4.
New variables can be added. Variable values can be set.

|~} Variables | 2 3z

Name Type
Address Address
Address_1 Address 1000:E0:01
Address_2 Address 1000:E0:02
Address_3 Address 1000:E0:03
Address_4 Address 1000:E0:04
multi_line_enable Boolean true

my-boolean Boolean false

my-coloor Color #ff557f

My-Text-String String Sports Channel

Filter: e New(M)

Cancel

Fig. 4-4: Variables Dialog

Create a Variable from a Property Value

To create a variable from a widget property value:
+ Select a widget on a screen or on a component schematic.
« Select a widget property value field in the Property box. See Figure 4-5.

86

Orbit MapView
User Manual

Properties

Width
Height
Aspect Ratio

Default

Selected widget 0.00
<inherit>
Disabled
Caption Label
Multi Line v True

Selected widget property value

Create Variable from Property S

Configure Variables...

Fig. 4-5: Create Variable from Property

« Click the ‘Set Variable’ downward-arrow button,
and select ‘Create Variable from Property. Set Variable

An Enter Variable Name dialog is shown. See Figure 4-6.

‘ Enter Variable Name &Iéj

Variable Name:

ca ption|

Fig. 4-6: Enter Variable Name Dialog

+ The variable name is filled out with the property name and may be edited.
Click OK when done.

+ The new variable name appears in the property value field surrounded by curly brackets.
See Figure 4-7.

87

Components and Variables
Variables in Orbit

New variable name surrounded by curly brackets,
{my-caption}

O O o Height
tLabe o '

Disabled
Caption {my-caption}
Multi Line v True

Fig. 4-7: Variable Name in Property Value Field

The new variable is now defined on the screen/component schematic.

View Variables/Set Variable Values

To view all the variables:

« Right-click in the background of a screen or component schematic:,
and select ‘Variables...” to show the Variables dialog. The variable values can be set in this
dialog.

{~} Variables l D eS|

MName

1000:E0:01
1000:E0:02

1000:E0:03

multi_line_enable Boolean

my-boolean Boolean

my-caption String

my-coloor Color #ffos7f

My-Text-String String Sports Channel

Filter: New New(N] Delete

0K Cancel Apply

Fig. 4-8: Variables Dialog

Use a Variable in a Property Value

To use a variable in a property value:
+ Select a property value. See Figure 4-9.

88

Orbit MapView
User Manual

Size 313.00 x 136.00
Width 313

Height 1
Aspect Ratio C

Default

0
herit>
Disabled

rder Color
Border Flash
Border Th
Border Style Solid Line
Corner Style Round
Radius
Fill
Fill Color

Selected property value

3

Set Variable

Fig. 4-9: Select Property Value

« Click the {...} ‘Set Variable' button,

Set Variable
A Select Variable dialog is shown.

The variables listed will be compatible with the selected property value type. For example,
for color property value types, color type variables are shown.

‘ Select Color Variable l ? ﬁ]
Variable for Fill Color

Filter: |

my-color

Fig. 4-10: Select Variables Dialog

« Select a variable name and click OK.

The property value is now set to the variable selected. See Figure 4-11.

89

Components and Variables
Variables in Orbit

Property value is now set to the
selected variable, here it is ‘my-color,
setting the ‘Fill Color ‘property value.

Border Coler /#0000

Border False
Border Thickness 2
Border Style Solid Line
Corner Style Round
Radi 0

Fill
Fill Color my-color

Fig. 4-11: Variable Used for Selected Property Value

Enter a Variable Directly into a String Value

To use a variable in a text string, surround the variable name with curly braces { }. For example:
+ {Address}
« {Input}
+ {My-Variable}

90

Orbit MapView
User Manual

Placing Functionality Inside a Component

Components are a useful way of encapsulating some graphical objects and their ‘behind-the-
scenes’ logic for re-use.

In this sub-section, the test bench screen from Extend Widget Functionality with Behaviours
and Bindings, on page 58, is developed by encapsulating some of the screen functionality into
a Component with the screen’s Pie Chart widget and its associated functionality. The test
bench screen from Extend Widget Functionality with Behaviours and Bindings, on page 58, is
shown in Figure 4-12.

PieChart-Extended.schx €

Widget Under Test: Pie Chart
Maximum Data Capadity (Gbit/sec) [m]]

—

Data Rate (Gbit/sec)

]

Behaviours

Cet
Set

Bindings
Fig. 4-12: Pie Chart Test Bench Screen (of Extend Widget Functionality with Behaviours and
Bindings, on page 58)

The following are covered in this sub-section:
+ Create New Component, on page 92;
+ Connect Widget-Level Bindings to Component Variables, on page 93; and
«+ Exercise the Component, on page 103;

91

Components and Variables
Placing Functionality Inside a Component

Create New Component

92

1 Open the test bench screen and select the Pie Chart widget (as shown in Figure 4-12).
2 Right-click on the selected Pie Chart widget and select ‘Copy-
The widget with its associated Behaviours and Bindings is copied to the clipboard.

3 Right-click on the ‘components’item in the Project View pane and select New
Component.
A new blank component is opened in new tab of the schematic editor.

4 Right-click in the blank area of the component and select ‘Paste’
The copied widget etc. is pasted into the new component. See Figure 4-13.

Behaviours

Fig. 4-13: Initial New Component

The pasted items comprise the copied widget with its widget-level Behaviours and Bindings.
Items that are NOT copied from the original schematic relate to screen-level items and these
need to be recreated in our component, which is described below.

Orbit MapView
User Manual

Connect Widget-Level Bindings to Component Variables

Create Component-Level Variables

The first step is to create component-level variables. For our Pie Chart example, we need a
variable for ‘Maximum Data Capacity’and a variable for ‘Current Data Rate’

In the opened component:

1 Right-click on the component’s background and select ‘Variables...", see Figure 4-14.
The Variables dialog is shown. See Figure 4-15.

Right-click on component
background, with nothing
selected to show context
menu.

My-PieChart_TEMP.cptx €

Undock Window

Full Screen

Run Mode

Scale to Fit

Select All

Deselect All

Lock

Resize to widgets
Behaviours Variables... , . ,
Al Connection Mode Select 'Variables...
Alarm Edit Behaviours
Alarm Acknowledgement
Ala
Audio Le
Audio Loud

Fig. 4-14: Right-click on Component Background

{~} Variables ? 2

Name Type Value
Current-Value String

Maximum-Value String

Filter: New(N) Delate

Cancel Apply

Fig. 4-15: Variables Dialog

2 Click New and a new line item appears in the Variables dialog.
3 Enter a Name for the new item. This is the name of a new component variable.
4 Repeat to add a second variable. See Figure 4-15.

93

Components and Variables
Placing Functionality Inside a Component

5 Click OK to close the dialog.
The component schematic edit screen is shown.

6 Ensure that no widget is selected in the component schematic.
And click on the Edit Behaviours button to show the ‘Behaviours and Bindings’ graphical
editor screen. (Clicking the button again toggles this on/off.)
7 Display the Behaviours list in the ‘Behaviours and Bindings’ editor screen.
and click on the ‘Local Value’item twice to add two Local Value Behaviours.
See Figure 4-16.

. . Properties box
Behaviours list

My-PieChart_TEMP.cptx € Properties

Page Size
Width
Height

General

Title

Top Level

Permission

Layout Properties
All ' L
GSM Text
Link
Load Control Scre

Layout

ock
Log Field
MV-Flex Control Name Local Value

Ping \ X Initial Value
Reset Latch Local Value Behaviour boxes Scope —
£ TII’T‘I?I H Mame Local Value
; Local Value properties shown

all+ Commat Initial Value

RollTrak Scope Internal
SNMP Get

Value

Local Value item

Fig. 4-16: Added Two ‘Local Value’ Behaviours

Now edit the Local Value Behaviour properties. This can be done in one of two methods, see
below:

Behaviour property value editing, Method 1:

8 Click on a Name property in the property box.
And enter a new name the Local Value, for example, use ‘Max Local Value'
See Figure 4-17a.

9 Click on the Initial Value property.
And click the Set Variable button. See Figure 4-17b.

A Select String Variable dialog is shown. See Figure 4-18.

94

Orbit MapView
User Manual

Properties

Default

Page Size 800 x 600
Width

itle
Top Level

Layout

Maximum-Value-Beh
Initial Value {Maximum-Value}
Scope Internal
Name rent-Value Name Current-Value
Initial Value rrent-Value} Initial Value urrent-Valua}

Scope Internal Scope Internal

Logged in: admin Logged in: admin

a) Editing Local Value Properties b) Set Variable Button

Fig. 4-17: Editing Local Value Properties: a) Properties Box; b) Set Variables

‘ Select String Variable l Pl
Variable for Initial Value

Filter:

Current-Value
Maximum-Value

Fig. 4-18: Setting a String Property Value

95

Components and Variables
Placing Functionality Inside a Component

10 For the Local Value which shall contain the ‘Maximum Data Capacity’ value in our
example,
select the ‘MaxIlmum’item in the variables list shown in the Select String Variable dialog.
(Figure 4-18)

11 Click OK.

12 The Local Value which shall contain the ‘Maximum Data Capacity’ value is now
configured.

Behaviour value property editing, Method 2:

13 Double-click on a Local Value Behaviour box in the ‘Behaviours and Bindings’ editor
screen (see Figure 4-16 on page 94).

The Edit Local Value screen is shown, see Figure 4-19.

My-PieChart_TEMP.cptx € Properties

ge Size
Width
Height

Title
Top Level
Permission

Edit Local Value
Name

Name Local Value Tnitial Value
Initial Value Scope
Scope Internal Name

Initial Value

Scope

Set Variable button
Fig. 4-19: Edit Local Value Screen

14 Enter a Name for the Local Value.

15 Click on the Initial Value item (as shown in Figure 4-19)
and click the Set Variable button.

16 The Select String Variable dialog is shown (see Figure 4-18 on page 95).

17 For the Local Value Behaviour which shall contain the ‘Current Data Rate’value in our
example, select the ‘Current-Value'item in the variables list shown in the Select String
Variable dialog.

18 Click OK.
19 Click Save.

The Local Value Behaviours are now configured, linked to component variables. See Figure 4-
20.

96

Orbit MapView
User Manual

Page Size
Width
Height

al

Maximum-Value-Beh
Initial Value {Maximum-Value}

Alarm Scope Internal

Alarm Wl Name Current-Value
Alarm Mask
Audio Level
Audio Loudnes: Scope

Initial Value nt-Value}

Local Value Behaviour boxes
Local Value Properties

Component Variables, {variable name}
Fig. 4-20: Configured Local Value Behaviours

There are now Behaviours defined at ‘component-level’ on the component and at ‘widget-
level’ See Figure 4-21a and b.

The next step is to connect up our widget-level items.

97

Components and Variables
Placing Functionality Inside a Component

Connect Widget-Level Bindings to Component-Level Behaviours

Alarm

Alarm Acknopv

Alarm M

Audio Level

Audio Loudngs:
) Pha
Window
d Caption

a) Behaviours defined at compbnent-level

My-Pie-2.cptx €@

hese are screen-level
Behaviours

Bindings connected to screen-level Behaviours

Behaviours

All

Command Line

Load Control Screen
Local Timer

Local Value

MV-Flex Control

'Max minus Current’ Binding

Bindings

b) Behaviours defined at widget-level

Fig. 4-21: Component with:
a) Component-Level Behaviours.
b) Widget-Level Behaviours and Bindings.

98

Orbit MapView
User Manual

1 Double-click on the ‘Max minus Current’Binding (see Figure 4-21b)
and edit the resulting dialog.
2 Change values to those shown in Figure 4-22a.

Edit Max minus Current

Commeon Properties

Name: Max minus :::urr‘enﬂ

Operation
LHS: Max Local Value
Operator: | Subtract

RHS: Current Local Value

Close

a) ‘Max minus Current’ Binding Settings

Edit Segment 1 Value Property

Common Properties

Mame: Segment 1 Value F‘rcuper‘ty{

Source Behaviour: Current Local Value

Property to bind: |Segment 1 Value
Bind Rules: Operator Expre

Default

Move Down Move Up 1 Delete

b) 'Segment 1 Value Property’ Binding Settings

Edit Calc Fraction used
Common Properties

Name: Calc Fraction used|

Target

Operation

LHS: Current Local Value Result: Fraction Used

Operator: Divide

RHS: Max Local Value

¢) ‘Calc Fraction Used’ Binding Settings
Fig. 4-22: Binding Settings:
a) 'Max minus Current’ Binding.
b) 'Segment 1 Value Property’Binding.
¢) ‘Calc Fraction used’Binding.

Components and Variables
Placing Functionality Inside a Component

3 Double-click on the ‘Segment 1 Value property’ Binding (see Figure 4-21b)
and edit the resulting dialog.
Change values to those shown in Figure 4-22b.
4 Double-click on the ‘Calc Fraction used’ Binding (see Figure 4-21b)
and edit the resulting dialog.
Change values to those shown in Figure 4-22c.
5 Click Save.

This has connected the widget-level items to component-level items. The resulting Behaviours
and Bindings editor screen is shown in Figure 4-23.

Component-Level Behaviours Widget-Level Bindings (and Behaviours)

My-Pie-2.cptx 3

Behaviours

Bindings

Fig. 4-23: Widget-Level Bindings Connected to Component-Level Behaviours

The component is now ready for use on a screen.

100

Orbit MapView
User Manual

Instantiate the Component on a Screen

The new Pie Chart component is now ready for using on a screen. To exercise it, we shall add it
to the test bench screen used in Exercising the Extra Functionality, on page 61.

1 Open the test bench screen.
2 To place a component on the screen, either:

« Drag the new Pie Chart component onto the screen schematic from the Project View,
alongside the existing Pie Chart widget. See Figure 4-24.

PieChart-Component.schx €3 Properties

Dim

Widget Under Test: Pie Chart New Component Under Test: "
Ia

Maximum Data Capacity (Gbi/sec) o

]

Data Rate (Gbit/sec)

]

Width
Height

[components/My-Pie-2.cptx
v True

Fig. 4-24: New Pie Chart Component Used on a Screen

Or

+ Click on the Component widget icon (see Figure 4-25), select the required component
from the Select File dialog, and click OK.

Select File dialog

B selectFile (2 [l
PieChart-Component.schx € I

Widget Under Test: Pie Chart

Maximum Data Capacity (Gbit/sec)

]

Data Rate (Gbit/sec)

]

Component

Fig. 4-25: Component Widget Icon

101

Components and Variables
Placing Functionality Inside a Component

3 Open the ‘Behaviours and Bindings’ graphical editor. (Click the Edit Behaviours button.)
4 Select the Pie Chart component.
5 Add two Property Bindings to the graphical editor screen. See Figure 4-26.

PieChart-Component.schx €3

Maximum Data Capacity (Ghbit/sec)

]

Data Rate (Gbit/sec)

L]

Widget Under Test: Pie Chart New Component Under Test:
1

Behaviours
Bindinas

All

Logical
Mapped
Math
Property
Rollc i3

Fig. 4-26: Two Property Bindings Added

6 Double-click on one Property Binding box

and set:

+ ‘Source Behaviour'to Max Data Capacity

« ‘Property to Bind’to Max-Value-Variable (see Figure 4-27)
And then click Add.

Edit Property

Common Properties

Name: Property
Unset
Source Behaviour

Property to bind:

Bind Ru
lue-Variable
Max-Value- ble
Layout Ttem Properties

Move Down Move Up A Delete

Fig. 4-27: Setting ‘Property to Bind’

102

Orbit MapView
User Manual

7 Double-click on the other Binding box to open the Edit Binding screen.

8 Set:
« 'Source Behaviour'to Current Data Rate
« 'Property to Bind'to Current-Value-Variable
And click Add.
9 C(lick Save.

The two component variables have now been connected to (bound to) screen-level Behaviours
on our test bench screen. See Figure 4-28.

(The previous Pie Chart widget and our new Pie Chart component are shown side-by-side.)

Widget Under Test: Pie Chart New Component Under Test:
D 1

Maximum Data Capacity (Ghit/sac)

[1]

Data Rate (Gbit/sec)

[1]

Behaviours T Test button
Bindinas

All

Combine

Custom

Direct

Event
Logical

Fig. 4-28: Test Bench Screen - Showing Component Bindings

Exercise the Component

1 Click the Test button to exercise the test bench screen.

2 Enter values in the Text Edit widgets to exercise the previous Pie Chart widget and our
new Pie Chart component side by side. See Figure 4-29.

103

Components and Variables
Placing Functionality Inside a Component

PieChart-Component.schx €

Meximum Data Capaciy (Ghiyseg) 'V 09Et Under Test: Pie Chart New Component Under Test:

Data Rate (Gbit/sec)

20

Behaviours

Bindinas

Event
Logical
Mapped
Math
Property
Rol

I3

a) ‘Data Rate’=20 Test button

‘Data Rate’ values entered to exercise Pie Chart

Maximum Data Capacity (Ghitisegy \V109¢t Under Test: Pie Chart New Component Under Test:

Data Rate (Gbitfsec)

b) ‘Data Rate’= 280

Fig. 4-29: Exercising Pie Chart Component: a) ‘Data Rate’ = 20; b) ‘Data Rate’ = 280

104

Orbit MapView
User Manual

Using Component Variables

Linking Component Variables to Widget Property Values

To link widget property values (for example, Label widget caption property values) to
component variables:
1 Open the ‘My-Video’ component in Orbit in Design mode.

2 Select the ‘Channel Label’ Label widget (Figure 4-30a) and select its ‘Caption’ property
value in the Properties box (Figure 4-30b).

a) Select ‘Label’ widget to see the widget’s properties.

b) Select the widget's ‘Caption’ property value

y Tools Window RollCall Control and Monitoring iControl Hel

100%

X My-video.cptx € Properties

E' Channél Label !

I E I Width

Height 31.00
Aspect Ratio Custom

Default *

udio Label 0.00
rmission Type
Caption {Channel-Label}
Muilti Li v True

Create Variable from Property

Configure Variables...

Logged in: admin

c) Click down-arrow and select ‘Create Variable from Property’

Fig. 4-30: Label Widget Caption Property Value:

3 Click the small down-arrow at the Set Variable icon
and select ‘Create Variable from Property’ (Figure 4-30c¢).

4 Enter a variable name in the Enter Variable Name dialog (see Figure 4-31)
and click OK.

105

Components and Variables
Using Component Variables

‘ Enter Variable Name &I&J

Variable Name:

Channel-Label|

0K Cancel

Fig. 4-31: Enter Variable Name Dialog

Now deal with the Audio Label widget:

5 Select the ‘Audio Label widget
and select its ‘Caption’ property value in the Properties box.

6 Click the Set Variable down-arrow icon
and select ‘Create Variable from Property".

7 Enter a variable name (‘Audio-Label’) in the Enter Variable Name dialog and click OK.
8 Click Save.

Widget caption property values are now linked to component variables:
+ ‘Channel Label’ widget caption linked to variable ‘Channel-Label’;‘and
« 'Audio Label’ widget caption linked to ‘Audio-Label’.

This can be verified by selecting the widget and inspecting its Caption property value in the
Properties box; for property values set to a variable, the value shows the variable name within
curly brackets. See Figure 4-32.

Caption property value set to component variable, {Channel-Label}

Properties box

B My CBM Project o |E&E] %
File Edit Project View Tools Window RoliCall Control and Monitoring iControl Help

(+] 100%

Project X my-Video.cptx €

_FieChart :Eé@:

Project '
B components o

Board.cpbx I I g
= Width

- Height
My-Component.cpix k

Ty-Video.cptx
udio Label

New-Compaonent.cptx

Network View x Capti {Channel-Label}

v o Irle

o B aarm List ® =

Logged in: admin

Fig. 4-32: Widget Property Value Set to a {Variable}

106

Orbit MapView
User Manual

Setting Component Property Values at Screen-Level

Return to our screen with several instances of our ‘My-Video’ component, see Figure 4-3.
1 Select one component on the screen.
2 Under the ‘Variables' heading in the Properties box:
+ Select the ‘Channel-Label’ property and change its value to ‘Camera 1' See Figure 4-33.
« Edit the ‘Audio-Label’ property value.

My_VideoInst.schx €

] n.
Camera 1 Program Out
B

[] z Width
3 Height
Ratio

0.

<inherit>

Disabled
Jcomponents/My-Video.cptx
v True

Monitor

Stereo
Channel-Label Camera 1

Fig. 4-33: Changing Value of a Component Variable at the ‘Screen-Level’

3 Repeat these steps for each component, setting different label values for each.

Each of the components on the screen can now have different settings for their ‘Audio Label’
and ‘Channel Label’ widgets. See Figure 4-33.

107

Components and Variables
Component with Multiple Variables

Component with Multiple Variables

Creating New Component

1 Right-click on the ‘components’item in the Project View pane of the Orbit MapView
screen.
And select New Component.

2 Enter a component Name in the dialog and click OK.
A new, blank component sheet is opened in the graphical editor.
3 Check that you are in ‘Design mode’ in Orbit.

4 Add widgets to the component sheet.
The example shown in Figure 4-34 contains four ‘Label’ widgets.

My-Component_TEMP.cpbx @

Fig. 4-34: ‘'New-Component’

5 Click Save.

Creating Multiple Component Variables

108

The component can be used on other screens. However, the label text is fixed at this point. To
make the label text editable each time the component is used in a screen, the label text must
be linked to a component variable.

To link label caption text to component variables:
1 Open the component in Orbit.

2 Right-click on the component background
and select ‘Variables' See Figure 4-35.

A ‘Variables' dialog is shown.

Orbit MapView
User Manual

My-Component_TEMP.cpbx €

Undock Window
Full Screen

Run Mode
Scale to Fit
Select All
Deselect All
Lock

Resize to widgets
Variables...
Connection Mode

Edit Behaviours

Fig. 4-35: New-Component: Right-click on Component Background and Select ‘Variables’

3 In the ‘Variables' dialog, click the New(N) button.
An Orbit new variable dialog is shown.

4 Set up the new variable dialog as shown in Figure 4-36.
And click Add.

Figure 4-37 shows the resulting added component variables (Label-Text-1, ..., Label-Text-4).

{~} Variables | ? Y

Name ¥ Type Value

{~} Orbit
Name format string: Label-Text-%d
Humber of times to copy: 4
Start Index: 1
Value format string: Label Text %d

Add

Filter: New New(N] Delete

0K Apply

Fig. 4-36: Orbit Variables and New Variable Dialogs

109

Components and Variables
Component with Multiple Variables

-} Variables
Name
Label-Text-1
Label-Text-2
Label-Text-3

Label-Text-4

Filter:

String

String

String

Label Text 1
Label Text 2
Label Text 3

Label Text 4

New(M)

Cancel

Delete

Apply

Fig. 4-37: Variables Dialog with Added Component Variables

5 Click Save.

Four new component variables have been added.

Linking Component Variables to Widget Properties

To link these variables to the captions of each of the Label widgets:

1 Select the first Label widget on the component; and then
select its ‘Caption’ property value in the Properties box. See Figure 4-38.

My-Component_TEMP.cptx (*) @

Caption property selected

Properties

Width
Height
Aspect Ratio

Default *

0.00
<inherit>
Disabled
Label

v True

a
blarm List -

Logged in: admin

Set Variable icon

Fig. 4-38: New-Component: Selected Label Widget and Caption Property Value

110

Orbit MapView
User Manual

2 Click the Set Variable icon.
The Select String Variable dialog is shown. See Figure 4-39.

r 1
‘ Select String Variable liléj

Variable for Caption

Filter:

Lebel-Text-1 ——Select first item
Label-Text-2
Label-Text-3
Label-Text-4

Cancel

i:ig. 4-39: Select String Variable Dialog

3 Click on the first item in the list shown. See Figure 4-39.
And click OK.

The first Label widget's ‘Caption’ property value is now linked to the first component variable.
This is shown in the properties of the Label widget, see Figure 4-40.

Selected Label widget and its properties

My-Component_TEMP.cptx €3 Properties

gLabeI Text 1 E
Label fe
Label .

Default *

LabEI 0.00

Caption property value set to component variable, {Label-Text-1}

Fig. 4-40: New-Component: Label Widget Caption Property Value Linked to a Component Variable

4 Repeat from step 1for the other Label widgets.
Link widget caption property values to component variables:
{Label-Text-2};
{Label-Text-3}; and
{Label-Text-4}.

5 Click Save.

The component may now be used on an Orbit MapView screen.

111

Components and Variables
Component with Multiple Variables

Using a Component with Multiple Variables

112

Project

Network View

1 Open an Orbit MapView screen.
2 Check that you are in ‘Design mode’ in Orbit.
3 Expand the ‘components’item in the Project View pane.

4 Drag on our newly-made component, ‘New-Component; from Creating New Component,
on page 108.

5 Select the component on the screen.
The screen-level properties of the component are listed in the Properties box. See
Figure 4-41.This includes the component variables.

Selected component Properties box, showing the
component’s ‘screen-level’ properties

x My_CmpntInst.schx € Properties

—

One instance of component:
Alpha s

Width
Bravo Height

Charlie

fcomponents/New-Component...
v True

One instance of component:

Label-Text-4

Component’s multiple variables
Fig. 4-41: Component Variables on a Screen

6 The component’s variables may be set in the Properties box.
this changes the variables for this instance of the component on this screen.

7 Click Save.

Another copy of the same component can be dragged onto the screen and its variables can be
independently set. Thus two or more instances of the component are possible. See Figure 4-42.

Orbit MapView
User Manual

My_CmpntInst.schx €

One instance of component:
Alpha
Bravo

Charlie

O '_‘ ul

Another instance:
Two

Three

Four

Fig. 4-42: Two Instances of a Component on a Screen - with Different Component Variables Values

113

Components and Variables
Binding to Component Behaviour Values

Binding to Component Behaviour Values

Behaviour values within a component can be used when the component is placed on a screen.
Bindings at screen-level may bind to component-level Behaviour values. Placing logic on a
component keeps the logic contained with the component and avoids unnecessary
duplication at screen-level.

Note: Logic defined in a component on a screen is only exercised when the
screen is open. It should be used for processing required when the screen is
open. For example:

« an action as a result of clicking a button on a screen; or

+ logic to determine some state to be shown when the screen is open.

If logic needs to run independently of a screen being open, then implement
the logic in a GlobalX file.
(See Orbit Global Files for Server-Side Processing, on page 282.)

For example, use this feature to contain the logic required to decide if a component is correctly
configured. A itself component is best-placed to decide whether it is correctly configured. (This
is specific to the component and may be a complex decision process.) The result of this
decision will be stored in a Behaviour on the component. And the Behaviour value can be used
at screen-level, for example, to hide a component when it is not configured.

The example following shows this.

Example - Controlling Component Visibility

114

This example generates a component which has an address variable. The variable is visible at
screen-level. The variable must be configured with a valid RollCall address, otherwise the
component should be hidden on screens where it is used.

The RollCall address format is NNNN:UU:PP, where N, U and P are hexadecimal digits.

A component is placed onto a screen with a Component widget and this widget has a visibility
property. A Binding is used to bind to this widget property on the screen and a Behaviour value
from inside the component is used to control widget visibility.

Orbit MapView
User Manual

Create a Component
1 Create a Component (‘My_Visibility-Component’).

2 Right-click on the component background and select ‘Variables...".
The Variables dialog is shown. See Figure 4-43.

Component

‘ My_C&M_Behavicurs

©

Project

Mv Bin i i

{~} Variables
Network View
Name

My-Address

Filter:

L

Component variable

File Edit Project View Tools Window RollCall Control and Monitoring iControl Help

150%

Visibility-Component.cptx @ Properties

Component:

Dimer S
Component Address = Page Size
Width

Component Visibility =

Layout

~ Type Value

String Variable not yet configured

(+] 5 Alarm List

New New(N) Delete

0K Cancel Apply

Variables dialog

Fig. 4-43: Created Component and its Variables Dialog

3 Click New to add a variable (name ‘My-Address’, type ‘String’).
4 Click OK to close the dialog.

115

Components and Variables
Binding to Component Behaviour Values

My_Visibility-Component.cpbc €3
Component:

Component Address =

Component Visibility =

Behaviour

All

Alarm

Alarm Acknowledge
Alarm M

Audio Le

Densite
Display Details

Fmail

Bindings

116

5 Add a Local Value Behaviour, double-click on it and set:
+ Name to ‘Component Visibility’".
« Initial value to ‘False’
6 Add a Local Value Behaviour and set:
« Name to ‘Component Address'.
« Initial value to ‘{My-Address}'.
See Figure 4-44.

Properties
Default

Caption not set

Width
Height

false

Name Component Visibility
Initial Value False
Scope Internal
Name Component Address
Initial Value Address}

Scope internal
Fig. 4-44: Component Variable ‘Component Address’ set to {My-Address}

7 Add a String Op Binding (see Figure 4-45a).
And configure Binding settings as shown in Figure 4-45b).

Orbit MapView
User Manual

Label captions show

My_Visibility-Component.cptx €3

component
Behaviour values:
mponent.
‘Component Address’, Solieilai
and
‘Component Visibility Component Addre Caption not set
Component Visibility = .1 .
Local Value Behaviours
Behaviours
Log Field process the RollCall address|
Local Value MV-Flex Control

Behaviour item
Bindings

a) Component with added String Op Binding

Edit Check Addres
Common Properties

Name: Check Address

Source - Function Target
Input: Component Address Function: RegExp (Match) - Result: Component Visibility Select
Search Term: [\da-fA-F1{4}:[\da-fA-F1{2}:[\da-fA-F1{2}

:

Start Index:

Length:

b) String Op Binding Settings

N\da-fA-F1{4}:[\da-fA-F1{2}:[\da-fA-F1{2}

Fig. 4-45: My Component:
a) Added String Op Binding.
b) String Op Binging Settings.

8 Click Save.

117

Components and Variables
Binding to Component Behaviour Values

Exercise the Component for a Valid RollCall Address

Open the component.
1 Right-click in the component’s background
and select ‘Variables... to display the Variables dialog.
2 Inthe Variables dialog, change the value of ‘My-Address’to a valid RollCall address (for
example, 0010:20:30).

{~} Variables l ? S

Name ~ Type

My-Address Address 0010:20:30

Filter: Mew New(N) Delete

0K Cancel Apply

Fig. 4-46: Editing Component Variable

3 Click OK.
4 Click on the Test button to exercise the component.

The resulting ‘Component Visibility’ Behaviour value should be ‘True’ because we have a
valid RollCall address.

Component:

Component Address= q(10:20:30

Component Visibility = ..o

5 Click on the Test button to stop the exercise.

Exercise the Component for an Invalid RollCall Address
1 Repeat the steps above but with an invalid RollCall address (for example, 0010:20:MM)
2 Click on the Test button to re-exercise the component with the new address value.

The ‘Component Visibility’ Behaviour value should be ‘False’ because we have an invalid
RollCall address.

Component:

Component Address = 10:20: MM

Component Visibility = 1.

3 Click on the Test button to stop the exercise.
4 Do not save these changes to the component.

Exercising is complete.

118

Orbit MapView
User Manual

Using the Component on a Screen
Create a Screen and Instantiate the Component

1 Create a screen.
2 Add two instances of the Component. See Figure 4-47.

Component instance 1 and 2

My_Bind-to-Cmpt-Beh_Eg.schx €3

Schematic
Compaonent Visibility "Bind to Component Behaviour” example
Component Instance 1

Component:
Component Address = Caption not set
Component Visibility = false

Compaonent Instance 2

Component:
Component Address = Caption not set
Component Visibility = false

Fig. 4-47: Created Screen
Set Up Component Instance 1

Bind to the Component’s Visibility Property

1 Select component instance 1 and show the ‘Behaviour and Binding’ graphical editor.
2 Add a Property Binding and view its properties; see Figure 4-48.

Edit Property Component 1

Common Properties

Name: Property Component 1

Source Behaviour: Component Visibility

Property to bind: |Visibility

Bind Rules: Operator Expression

Move Down Move Up A Delete

Fig. 4-48: Edit Property Binding Settings (for Component Instance 1)

To select the Property Binding’s Source Behaviour:

3 Click Select for the Source Behaviour item.
The Select Behaviour dialog is shown. See Figure 4-49.

119

Components and Variables
Binding to Component Behaviour Values

120

‘ Select Behaviour ? P

Behaviours:

Component Visibility (Local Value)
Component Address (Local Value)

Select to show the Behaviours belonging to the
selected Component

Show directly owned behaviours only. Select to show all component Behaviours
ow component behaviours.

[Create New Local Value

Fig. 4-49: Select Source Behaviour Dialog

4 In the Select Behaviour dialog:
« select the Show Directly Owned Behaviours Only option; and
+ select the Show Component Behaviours option.

5 Click on the ‘Component Visibility’ Behaviour item in the resulting list in the dialog. See
Figure 4-49.
(This is the ‘Component Visibility’ Behaviour of the selected component.)
The Select Behaviour dialog closes.

This has selected the component’s ‘Component Visibility’ Behaviour as Source Behaviour for
the Property binding.
To select ‘Property to Bind’, in the Edit Binding Properties box (Figure 4-48 on page 119):
6 Select ‘Visibility’ as the ‘Property to Bind-
For ‘Bind Rules;

7 There should be no Bind Rules. This means that the Source Behaviour’s value is used
directly.

8 Click Close.

Set Up RollCall Address Specifically for Component Instance

To configure the RollCall address parameter specifically on each component instance:
1 Select the first component on the screen schematic.

2 Inthe Properties box, change the value of variable ‘My-Address
For example, use ‘0010:20:MM’; see Figure 4-50a. This is an invalid address.

3 Click Save.

The component instance now uses a Behaviour value from within component instance to
control the visibility of the component instance.

Set up Component Instance 2

1 Select the second component instance
and do the same as for instance 1, except use a different variable ‘My-Address’ value.
(For example, use ‘0010:20:30"; see Figure 4-50b.)

2 Click Save.

Orbit MapView
User Manual

My_Bind-to-Cmpt-Beh_Eg.schx € Properties

Schematic
Component Visibility "Bind to Compenent Behaviour" example
2 5 In!

Component:
Width
Component Address = Caption not set Height
Component Visibility = false
Component Instance 2 =)
CDmponerlt: atl fcomponents/My_Visibility-Component.cphx
5 v True
Component Address = Caption not set
Component Visibility = false

Behaviour

My_Bind-to-Cmpt-Beh_Eg.schx € Properties
Schematic
Compaonent Visibility *Bind to Component Behaviour” example
Component Instance 1
Component: :
Width
Component Address = Caption not set Height
Aspect Ratio
Component Visibility = false
COTPO S IS e £ 1
Component: / ility-Component.cptx
v True
Component Address = Caption not set
Component Visibility = false
|}

b) Configure RollCall Address on Component Instance 2

Fig. 4-50: Configuring RollCall Address on Component Instances:
a) Instance 10010:20:MM (an invalid address)
b) Instance 20010:20:30

121

Components and Variables
Binding to Component Behaviour Values

Exercise the Screen

To exercise this screen:

1 Click on the Test button.
The screen is exercised.

2 The settings of Figure 4-50(a and b) result in the first instance of the component not being
shown because its RollCall address is invalid. See Figure 4-51.

Instance 1 not visible. Instance 2 visible.

My_Bind-to-Cmpt-Beh_Eg.schx @ — Properties

Schematic
Component Visibility "Bind to Component Behaviour” example
Companent Instance 1

Component Instance 2

Component:

Component Address = 0010220:30

true

Component Visibility

Behaviour

Nicnlaw Nataile

Bindings
Fig. 4-51: Exercising Screen.

122

5 Bindings

Summary

Bindings

DiFECE BINAING.vusvrrirriseirseirsssssssissississsssssisssasses page 124
PrOPEITY BINAING ..cuvesereerereirsiesesississississssississsssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssasssssans page 126
EVENE BINGING woveeeverrirrisisiireirsissississississsssssssssssssssassssssssssssssssssssssassssssssssssassssssssssssassssees page 128
Behaviour Arguments page 132
SEING OP BINAING weurvrrrierireeereirseseiseiserseinsesseisssasssssssssssssssessssssssssssssssssssssssssssssssssssasssssssssssns page 133
MR BINAING vtrerrireireirrierirserreirsissississsssssnssesssesasssssssssssns page 141
Mapped Binding eeeeeeus eSS R AR page 142
LOGICAI BINAING weveeeeverrrrrrireresresrssississsessssissssssssassssssssssssasssssssssassssssssssssassesssssssssasssssssssassansessaens page 143
COMDBINE BINAING caeeererrrrrersierrerrrsissiessessissssssssssssssssssssasssssssssassasssssssssassassssssssassassssssassassasssasses page 145

This chapter introduces some MapView-specific Bindings which are used in the examples in
this document. Other Bindings are described in the ‘Orbit for Multiviewers' user manual.

123

Bindings
Direct Binding

Direct Binding

The Direct Binding is used to link two values. The Direct Binding performs a one-to-one
mapping between a source Behaviour's value and a target value of a widget or another
Behaviour. It is generally used with widgets that have a ‘value’ (for example, user interface
widgets such as Text Box, or Slider). Any source value changes may be reflected at the target,
and vice versa. (This includes some value attributes, for example, ‘visibility; read-only and error
states - some of which may be hidden from the user.)

Figure 5-1 shows the Binding’s properties.

Edit Direct
Common Properties
Name: Direct

Source Behaviour: Local Value Behaviour for TextEdit Value

Mode: Read/Write

Format 5tring:

Target: @ widget O Behaviour

Fig. 5-1: Direct Binding Edit Properties Dialog

Table 5-1: Direct Binding Properties

Property Description
Name Enter a name to identify the Binding.
Source Behaviour The Behaviour that the Direct Binding is to be connected to.

For example, a connection to a Local Value Behaviour provides a
convenient way of getting/setting the value of a user
interface/control widget.

Widgets may be directly bound to Behaviours such as RollCall-type
Behaviours.

Mode Determines the “direction’ of the Binding connection to be made -
in one direction, or two-way between the source Behaviour value
and target widget/Behaviour value.
The Binding's connection will work:

Read -from source Behaviour value to target value only;
Write -from target value to source Behaviour value only;
Read/Write «in both directions.
Format String Define a text format string. This can be used to prefix text, and/or
format text.

Format string examples:
+%.2f - Format a numeric value to 2 decimal places.
+%s dB — Append text “dB” to the end of a string.
+%X - Display a numeric value as hexadecimal string.

Note: These are standard C-style format strings.

124

Orbit MapView
User Manual

Table 5-1: Direct Binding Properties (continued)

Property

Description

Target

Radio buttons:
Widget

Behaviour

Select

Define the target value for the Binding's source value to be
connected.

Select to use the widget value.

Select to use a Behaviour value.

Button/text box. Active when Behaviour is selected.

Select the Behaviour to use as target.

125

Bindings
Property Binding

Property Binding
The Property Binding is used to update a widget's property value from a source Behaviour
value. For example, an on-screen tally lamp color may depend on some alarm value.

The Property Binding can be configured with rules to map the source Behaviour value to
values or a value range suitable for the target property. (If no rules are present, then the source
value is used directly.)

Figure 5-2 shows the Binding's properties which are described in Table 5-2.

Edit Property

Common Properties

Name: Property]

Source Behaviour: Local Value Behaviour for Border Thickness

Property to bind: Border Thickness

Bind Rules: Operator Expression

Move Down Move Up A Delete

Fig. 5-2: Property Binding Edit Properties Dialog

Table 5-2: Property Binding Properties

Property Description

Name Enter a name to identify the Binding.

Source Behaviour Select the source Behaviour that the Binding is to be connected to.
Property to Bind Select the widget property to bind to.

Note: The drop-down list items shown depends on the widget
being bound to.

Bind Rules Processing rules are listed in this Bind Rules section of the table.
Use a default rule, to be used if no other rule matches.

Note: The first rule to be satisfied is used.
Therefore, the ordering of the rules in the list is critical.

Note: If the rules table is empty, the value will be copied directly to
the target value.

Table columns:

Operator Drop-down box.

Select the operator for the rule to use.

126

Orbit MapView
User Manual

Table 5-2: Property Binding Properties (continued)

Property

Expression

Result

Buttons:
Move Down
Move Up
Add

Delete

Description

Select operator.

Operator
Equals
Not Equals
Less Than

Greater Than

Less Than or Equal

ter Than or Equal
ins Text
s Text (Any Case)

Default

Enter literal, fixed value.
This value is compared with the Behaviour value.
For example, ‘49’ or ‘Warn’.

Enter value to use if the rule evaluates to true.

This can be a literal value, a color or a string.
For example, ‘49’, or ‘#00FFOQ’, or ‘Warning'.

Note:

In a string value type, “%1" can be used to represent the Behaviour
value used. (If the Behaviour has more than one value,

then %2, %3 etc can also be used.)

Note:
A format specifier can be used (%1,%2.f,%d etc.)

For example, to format a number to be
‘My Number is: 12
then “My Number is:%1” can be used in the Result field.

Click to move the selected row down the list.
Click to move the selected row up the list.
Click to add a new, blank rule row to the list.

Click to delete the selected row from the list.

127

Bindings
Event Binding

Event Binding

128

The Event Binding is used to handle user interface (Ul) events (for example, button click
events). Upon an event, the Binding will either: execute a target Behaviour’s action; or set a
target Behaviour's value to a new value. It can be used for the following purposes when a Ul
control is clicked by a user:

« Execute a target Behaviour action when a certain condition is met.
- Set a Behaviour value to a specific value, or to a value copied from a source Behaviour.
And it can be used to:

+ Execute automatically when a source Behaviour value changes, or is changed to a specific
value.

Conditions can be configured in the Event Binding to qualify execution of the Event Binding.
This enables an action to be executed dependent on a current value, or if a source Behaviour
value changes to a specific value.

Note: Dependent on what a Behaviour does and how it is intended to
work, there may not be actions. Therefore these do not execute.

An Event Binding may be added to a Ul widget, for example to a Button widget.

MY _Event-Binding.schx €3

My Button Caption

All -
Alarm Acknowl

Nisnlav Netfails

Fig. 5-3: Button Widget and Event Binding

The Event Binding settings screen is shown in Figure 5-4.

Orbit MapView
User Manual

Edit My Event Bind
Commeon Properties

Name: My Event Bind

Source Condition

Handle widget event LHS:

click = Operator: |Equals @® Trigger behaviour
(© Handle behaviour value change RHS: data
Literal =

(O set behaviour value

a) Source=‘Handle widget event’

Edit My Event Bind

Common Properties

Name: My Event Bind

Source Condition

@ Handle widget event LHS: Link to source

@® Handle behaviour value change

(® Trigger behaviour
Select Operator: Equals data
RHS: Literal -

(O Set behaviour value

b) Source="Handle behaviour value change’

Fig. 5-4: Edit Event Binding Settings Dialog Appearance:
a) Handle Widget event selected.
b) Handle Behaviour value change selected.

129

Bindings
Event Binding

Table 5-3: Event Binding Properties

Property Description
Name Enter a name to identify the Binding.
Source Radio buttons.

Handle widget event

Handle Behavi

Select to react to a user interface widget event.

The specific event is selectable via a drop-down menu. Options:

click

pressed

released

+ Click - when widget is clicked on.
« Pressed - when (button) is pressed.
+ Released - when (button press) is released.

our value change
Select to react to a Behaviour value.

The specific Behaviour is selected via a Select Behaviour dialog.

Condition

LHS

Link to source

Operator

RHS

Check box.
Select to apply a condition to the Event handling.

Set up the left hand side of the condition expression.

Check box.
Select to use the source Behaviour value.

Text box. (Link to source not selected)
Select Behaviour to use for the condition expression.

Select operator for the condition expression.
Options are similar to those used by a Logical Binding (see Logical
Binding, on page 143).

Enter a value to use in right hand side of the condition expression.

Target

Select a target Behaviour via a Select Behaviour dialog.

Radio buttons:

Trigger Behaviour

Set Behaviour

Select this to trigger a Behaviour with an argument.
Options:
- Execute - trigger the target Behaviour. (See Figure 5-5a.)

- Data - set an argument value to trigger the target Behaviour
with. The argument can be a value or a Behaviour value. (See
Figure 5-5b.)

See Behaviour Arguments, on page 132 for information about
arguments to Behaviours.
value
Select this to set the target Behaviour to a value. (See Figure 5-5c¢.)
Options:

« Literal - set a value to use. (See Figure 5-5c¢.)

+ Behaviour - set a Behaviour value to use. (See Figure 5-5d.)

130

Orbit MapView
User Manual

@ Trigger behaviour

execute

(O set behaviour value

a) Trigger Behaviour

Trigger target Behaviour

@ Trigger behaviour
data
Literal - Argument value

(O set behaviour value

b) Trigger Behaviour with Argument

(O Trigger behaviour
(® set behaviour value

Set target Behaviour value

Literal -

Argument value

¢) Set Target Behaviour Value to a Value

Q© Trigger behaviour

Literal -

Behaviour whose value provides argument value

(® Set behaviour value

Behaviour ~

d) Set Target Behaviour Value to value of a Behaviour

Fig. 5-5: Event Binding Settings - Target

131

Bindings
Behaviour Arguments

Behaviour Arguments

A target Behaviour may be passed an argument when it is executed. This will control its action.
To find out if a Behaviour has arguments, in the ‘Behaviour and Binding’ graphical editor:

+ Hover the cursor over the Behaviour.
Information about the Behaviour is shown. For example, see Figure 5-6.

Local Timer Behaviour Arguments

‘W Hover curso

Local Timer: Creates 3 timer local to the schematic, Pass) 'start|reset|stop|pause’ |as Data event to control.

Fig. 5-6: Behaviour Information and Arguments.

132

Orbit MapView
User Manual

String Op Binding

The String Op Binding permits string functions to be performed on Behaviour values. (For
example, to extract part of a log field, or to test for a specific value.) The result may be part of
the input text string, a Boolean value or an integer value. The result is stored in a target
Behaviour. If input values changes, the Binding will keep the target Behaviour value updated.

The resulting Behaviour value may be bound to a widget or used by other bindings to form
more complex functions.

Figure 5-7 summarizes the String Op Binding settings and Figure 5-8 lists available string
operations.

Select the Behaviour value to Select function of the string operator:

provide the input text string. -Search Term: Set a search string.

(The usage depends on the function selected.)

-Case Sensitivity: Check box. Select to enable case-sensivity for the
selected function.

-Start Index: Start character position parameter for some functions.
-Length: Sets a length parameter for same functions.

String operator function parameters.

Select Behaviour to put result value into.

Edit String Op Binding

Common Properties

Name: String Op Binding|

Source Function Target

Input: Input-String-Beh Function: Substring after Result: OQutput String Beh

Fig. 5-7: String Op Binding Settings

Function: Substring after

Substring before

String length

Left

Right

Mid

Index of

Last index of
Trim
Uppercase

Lowercase

Not Equals

RegExp (Match)
Fig. 5-8: String Functions

133

Bindings

String Op Binding
Table 5-4 gives some examples of each string operator function.
Table 5-4: String Operator Function Examples
Operation Example
Substring after Result is a string type.

Text siring:

Result:

Edit String Op Binding
Common Properties

Name: String Op Binding|

Source

Input: Input-String-Beh Select

Mary had a little lamb and Jack and Jill went up the hill,

and Jack and Jill went up the hill,

Function

Function: Substring after

Search Term: lamb

ty: O

Resulting string
Function parameters

Target

- Result: Output String Beh Select

Substring before

Result is a string type.

Text string:

Mary had a little

Edit String Op Binding

Common Properties

Mame: String Op Binding|

Source

Input: Input-String-Beh

Mary had a little lamb and Jack and Jill went up the hill.

Function

Function: Substring before
Search Term: lamb

ty: O
Start Index:

Length:

Target

Result: Output String Beh Seled

134

Orbit MapView
User Manual

Table 5-4: String Operator Function Examples (continued)

Operation Example
String length Result is an integer type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
dit String Op Binding
Common Properti
Name: String Op Emrjing\
Source Function
Input: Input-String-Beh Function: String length
search Term:
Sensitivity:
Start Index:
Length:
Left Result is a string type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
Mary had a littl
Edit String Op Binding
Common Properties
Mame: String Op Binding|
Source Function Target
Input: Input- g-B Function: Result: Output String Beh Selg)
arch Ter
Start Index:
Length:
Right Result is a string type.

Text string
Mary had a little lamb and Jack and Jill went up the hill.

ent up the hill.

ng Op Binding

Common Properties

Name: String Op Emrjing\

Source Function Target

Input: Input-String-Beh Function: g R Qutput String Beh Sele

135

Bindings

String Op Binding
Table 5-4: String Operator Function Examples (continued)
Operation Example
Mid Result is a string type.
Example 1:
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
elamb a

Edit String Op Binding

Common Properties

Name: String Op Binding|

Source Function Target
Input: Input-String-Beh Function: i Result: Output String Beh Sele
rch Term:
Length:
Example 2: Parse “1000:AA:00":
+ Start =5, Length =2;
+ Result ="AA"
Index of Result is a string type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
18
dit String Op Binding
Common Properties
Name: String Op Binding
Source Function Target
Input: Input-String-Beh Function: Index of Result: Output String Beh Select
Search Term: lamb

Length:

136

Orbit MapView
User Manual

Table 5-4: String Operator Function Examples (continued)

Operation

Example

Last Index of

Result is an integer type.

Mary had a little lamb and Jack and Jill went up the hill.

Edit String Op Binding

Common Properties

Name: String Op E:imjmg|

Source Function Target

Input: Input-String-Beh Function: Last index of Output String Beh Sele

Start Index:

Length:

Trim Result is a string type. Removes white space from beginning and end of a string.
Example:
+ Inputstring=" 100 ”
+ Result = “100"
Uppercase Result is a string type.

Text string:
Mary had a little lamb and Jack and Jill went up the hill.

MARY HAD A LITTLE LAMB AND JACK AND JILL WENT UP THE HILL.

Edit String Op Binding

Common Properties

Name: String Op Binding|

Source Function Target

Result: Qutput String Beh Selg

Input: Input-String-Beh Function: Uppercase

Search Term:

Start Index:

Length:

137

Bindings

String Op Binding
Table 5-4: String Operator Function Examples (continued)
Operation Example
Lowercase Result is a string type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
mary had a little lamb and jack and jill went up the hill.
Edit g Op Binding
Common Properties
Name: String Op Emrjing\
Source Function Target
Input: Input- -B Function: Lowercase Result: Output String Beh
Search Term:
Begins with Result is a Boolean type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
Edit String Op Binding
Common Properties
Name: String Op Binding|
Source Function Target
Input: Inpu i Function: Begins with Result: Output String Beh
Search Term: mary
C]
Start Index:
Length:
End with Result is a Boolean type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
true
Edit String Op Binding
Common Properties
Name: String Op Binding|
Source Function Target
Input: Input-Stri Function: Ends with t: Output String Beh
Search Term: hill.
C]
Start Index:
Length:

138

Orbit MapView
User Manual

Table 5-4: String Operator Function Examples (continued)

Operation Example
Contains Result is a Boolean type.
Text string:
Mary had a little lamb and Jack and Jill went up the hill.
true
Edit String Op Binding
Common Properties
Name: String Op Binding|
Source Function Target
Input: Input-String-B Function: Contains Result: Output String Beh
Search Term: jack
-0
Start Index:
Length:
Equals Result is a Boolean type.
string:
1234567890
Edit String Op Binding
Common Properties
Name: g Op Binding
Source Function Target
Input: Input-5i -B Function: Result: Output Stri
Search Term:
ity:
Start Index:
Length:
Not Equals Result is a Boolean type.

Text string:
Mary had a little lamb and Jack and Jill went up the hill.

true

Edit String Op Binding

Common Properties

Name: String Op Binding|

Source Function

Input: Tnput-String-B Function: Not Equals

Search Term: Doctor Foster went to Gloucester.
Start Index:

Length:

Target

sult: Output String Beh Sele|

139

Bindings
String Op Binding

Table 5-4: String Operator Function Examples (continued)

Operation

Example

RegExp (Match)

Result is a Boolean value.
The function uses regular expressions to match text in input string.

Example 1: Match ‘w’and ‘t’ which are separated by any two characters. E.g. ‘went.

Text string:
Mary had a little lamb and Jack and Jill went up the hill.

true

Edit String Op Binding

Common Properties
Name: String Op Binding
Source Function Target
Input: Input-String-Beh Function: RegExp (Match) Result: Output String Beh Seleq

Search Term:

Start Index:

Length:

Example 2: Does input string contain a numeric value?
+ Input string = “FAIL: 10",
+ Search term =\d+
+ Result =True

RegExp (Capture)

Result is a string value.
The function uses regular expressions to capture text from the input string.

Example 1:

Text string:
Mary had a little lamb and Jack and Jill went up the hill.

went

dit String Op Binding

Common Properties

Name: String Op Binding|

Source Function Target

Input: Input-String-Beh Function: RegExp (Capture) Result: Output String Beh

h Term: (w..t)

ndex:

Length:

Example 2: Get numeric value if input string contain a numeric value:
+ Input string = “FAIL: 10",
« Search term = (\d+)
+ Result="10"

140

Orbit MapView
User Manual

Math Binding

The Math Binding is a general purpose binding which accepts two input Orbit Behaviour
values (LHS and RHS) and performs a mathematical operation on them. The resulting value is
stored in a target Behaviour.

If either of the input values change, the Binding will keep the target Behaviour value updated.

Many Math Bindings can be chained together with intermediate Local Value Behaviours to
form a chain of operations. Figure 5-9 summarizes the Math Binding settings.

LHS and RHS inputs to the math operation. Select Behaviour values to use.

Select mathematical operator:
Add, Subtract, Multiply, Divide, Modulus.

Select Behaviour to put result value into.

Edit Calc Fraction used
Common Properties

Name: Calc Fraction used|

Operation Target

LHS: Current Data Rate Result: Fraction Used

Operator: Divide

RHS: Max Data Capack

Fig. 5-9: Math Binding Settings

Note: The Math Binding automatically extracts numeric values from a
string that starts with a number. This is useful.

Hence, it is possible to use some strings directly (for example, from a Log

Field). A string may contain ‘10.4 Gbits/sec’ and the Math Binding will

extract the 10.4 value.

141

Bindings
Mapped Binding

Mapped Binding

The Mapped Binding is a general-purpose binding which accepts a single input Behaviour
value and performs a mapping operation. The resulting value is stored in a target Behaviour.
This Binding type is useful when available values are not in some particular format/range for
subsequent use (for example, when converting a list of status codes 1, 2, 3 etc. into a list of

",

colors “red’, “green’, “yellow” etc.).

The mapping operation is defined as an ordered list of rules. The first rule to match will be used.
There may be a default rule if none of the rules match. If no rules match, and no default exists
the mapping will do nothing (no-op), and the target Behaviour value will not be changed.

Figure 5-10 summarizes the Mapped Binding settings.

Name: Identifies Binding

Select Behaviour value to use.

Edit Mapped Bind

Common Properties

Name: Mapped Bind|

Source Behaviour: Textual Part Beh

Mapped operation is defined with lm
Bind Rules: Bind Rules: Operator Expression Result
Contains Text G 1.0
+ (1) Operator - Rule used when : o e
determining whether there is a R 1000.0
match. Contains Text
Operators: Equals, Not Equals, Contains Text
p q q

Less than, Greater than, Less
than equal, Greater than equal,
Contains text, Contains text (any

case).

+ (2) Expression — Comparison
value used to compare input

against.

Maove Down Move Up A Delete

Target: Divisor Value Beh Select

+ (3) Result - Resulting value
from the bind rules.

142

Target - The Behaviour value to be updated with the result.

Note: A ‘No-Op'result does not update the target.

Fig. 5-10: Mapped Binding Settings

Note: A Property Binding can perform a mapping when binding to a
widget. A Property Binding with no rules will pass the source
value.

Note: When mapping, it is good practice to explicitly use a separate
Mapped binding, storing the resultant value in a Local Value
Behaviour.

Orbit MapView
User Manual

Logical Binding

The Logical Binding is a general-purpose binding designed to compare Behaviour values
against either a literal value, or another Behaviour value. The resulting value is stored in a
target Behaviour.

Note: Use the Logical Binding to compare two Behaviour values.
Use a String Op Binding to compare a single string with a literal.

The logical expression used in a Logical Binding allows many comparisons to be compounded
with an ‘AND’ or ‘OR’ operator in an Expressions Table, which defines all expressions that are
evaluated by the Binding. The Expressions Table will always evaluate to a Boolean True or
False value. The overall evaluated value is used to generate a resulting Binding value.

Figure 5-11 summarizes the Logical Binding settings and Figure 5-12.

Expressions Table, see Figure 5-12.

Edit Logital Bind

Commen Properties

Name:| Logical Bind|

Logical Operator: AND ~
LHS Type LHS Behaviour LHS Value

Behaviour Input Value 1 Value

Behaviour Input Value 2 Value

Result:

True Result: Literal = True

False Result: | Literal - False

Operator
Equals

Greater Than

Name: Identifies Binding

RHS Type

Literal

Literal

RHS Behaviour RHS Walue

Delete

Target:

My_Logical_Result

Result: From evaluated expressions table (a True or False value), Target: Select Behaviour value to update
select values for the final Binding result.

Fig. 5-11: Logical Binding Settings

with final Binding result value.

143

Bindings
Logical Binding

LHS Type: Sets the type of the LHS expression (‘Literal, or ‘Behaviour’)

LHS Behaviour: Select Behaviour for LHS.
LHS Value: Sets the literal value for LHS, or part of Behaviour value.

Operator: Sets the operator used for the expression item:
Equals, Not Equals, Less Than, Greater Than,
Less Than or Equal, Greater Than or Equal,
Contains Text, Contains Text (Any Case)

Similar to LHS

Row items Logical Opergtor: |AND ~

LHS Type LHS Behaviour LHS Value Operator RHS Type RHS Behaviour RHS Value

Behaviour Input Value 1~ Value Equals Literal 10

Behaviour Input Value 2 Value Greater Than Literal 13 v

Delete

Click to Add a row
Logical Operator: Select AND or OR to set the logical

operator to combine expression row results. Select a row and click Delete to delete a row

Fig. 5-12: Expressions Table

Table 5-5 lists some example expressions that are possible.

Table 5-5: Example Expressions

Expression Table Row Item Logical Row Result
Example Expression
LHS RHS Operator True False
If (A=L2) Behavior A. Literal value L2. - L2 No-op
T=L1
If (A=L1 AND B=L2) | Two rows in the expressions table: AND B A
T=B 1) LHS set to Behaviour A, RHS set to L1.
else T=A 2) LHS set to Behaviour B, RHS set to L2.
If (A=B) Behavior A. Behavior B. - L1 L2
T=L1
else T=L2
If (A=BOR A>=L1) |Two rows in the expressions table: OR L2 No-Op
T=L2 1) LHS is set to Behaviour A, RHS set to B.
2) LHS is set to Behaviour A, RHS set to L1.

Where: -A and B are input Behaviour values.

-T is a target Behaviour.
L1 and L2 are literal values.

144

Orbit MapView
User Manual

Combine Binding

The Combine Binding concatenates values together to form a new value. Source value
changes are reflected in the target value. The Binding can concatenate strings, for example, to
form a formatted command line string from two or more source values.

Figure 5-13 shows the Binding properties screen.

Table of inputs Joining specifying

Edit Comnbine

Common Properties

MName: Combine

Inputs: Behaviour Behaviour Value

Aadd
TextEdit 1 Beh Value
Remove
Local Value
Address

Log Field MY_LOG_HEADER

Value

Log Field MY_LOG_ANOTHER

u
Log Field MY_L YETANOTHER ©

Down

Join Mode: (O Separator (@) Format String
Separator/Format: %1, Addres . Log Field

Target: Combined Result

Target Behaviour
Fig. 5-13: Combine Binding Properties

Table 5-6 describes each property item.

Table 5-6: Combine Binding Properties

Property Description
Name Enter a name to identify the Binding.
Inputs
Buttons:
Add Click to add a Behaviour to the bottom of the list.
(B select Behaviour)

Behaviours:

Combined Result (Local Value)
Log Field (Log Field)

Local Value Address (Local value)
TextEdit 1 Beh (Local Value)

[show directly owned behaviours only.

[show companent hehaviours.

|:| Create New Local Value

145

Bindings
Combine Binding

Table 5-6: Combine Binding Properties (continued)

Property
Remove
Up

Down

Columns:

Behaviour

Description
Click to remove selected item from list.
Click to move selected item up list.

Click to move selected item down list.

Lists an input Behaviour.

Behaviour Value

Select the Behaviour value to use from drop-down list
(in cases where there is more than one value associated with the
added Behaviour).

Join Mode

Separator

Format String

Radio buttons.
Select the mode to combine the input values:

+ Select to combine separated by a fixed text string.
Select to format the combined output.

A string is formed from the listed Behaviour values with a format
specified by the Separator/Format format string.

Separator/Format

Text box.
Specify the separator or the format string to use.

Example: For three inputs: “Quick”, "Brown’, and “Fox".

« Join Mode: Separator _SEP_
Output is:
Quick_SEP_Brown_SEP_Fox

«Join Mode: Format String
First= % 1;second= % 2;and thid= % 3.
Output is:
First= Quick; second= Brown; and third= Fox.
The Format String should contain placeholders%1,%?2,...,

corresponding to the values of items in the list, which are
inserted at the placeholder positions.

Target

Select a target Behaviour via a Select Behaviour dialog.

146

6 Behaviours

Summary
Behaviours
Local Timer BERAVIOUFowveevvorserseersinseerssensens page 148
BeRnaviour AFGUIMENES. vt ettt et ettt et e ettt e ieeineans page 149
AlGIMN BENQVIOUL couueeeeeeeesreseserrssisssssissississsssssisssssnssassasssassassssssssses page 150
Alarm Configuration Dialogcouuiiuiiiiiie ittt iieeaennn, page 152
Alarm Acknowledge Behaviourooevnseneennen. page 155
Alarm Mask Behaviourucoeeeereenenne. . page 156
RESEL LALCH BENAVIOUF c.eaeeeeeersereerrirrissseseeseississsseassassssssssssssssssssssssassasssssssssassssssssssssassassssssassases page 158
LOG FI@ld BENQVIOULT ...eeeeereeesrererersiesressssissssssesssssssssssassassssssssassassssssssssssasssssssssassassssssassassassssssans page 159
#HASh FIeld# SYNtaxooon et e e et e e page 164
<ANGIE-Bracket> SYNtAXo.uee ettt et ettt e page 166
GSM BENAVIOULS ccvevvrsversrersississississsisssasss page 168
GSMAIGrmM BeRAVIOUL ..ottt e e e e e page 168
GSMTEXt BERAVIOUL ..ottt e et e et it ie e iee e page 169
GSMMGASk BENAVIOUNue ettt et ie e page 169
SNMP BERQVIOULS c.vvuvereereerrinsiseseississisiasssssessissasssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssasssssssssases page 171
SNMP Get BENAVIOUIttt e e e ettt i eans page 171
SNMP SEtBENAVIOUL ..o vttt ettt eiaeees page 172
LiNK BERAVIOUL .uneeneeereereeerseiseeseiseisssississssssesssassssssssssssssssssasssasssasses page 174
10T (3 et 1o o I page 174
State INfOrmation.c.o.ee ittt et e et e page 174
Y [=2 page 175
Link Behaviour and Propertiesoeeueeueeeie e eieeieieeiaeniaennnns page 176
Create a Link Between TWO SCreENSvvuee et ie et ie e iieeiaeeiiaeennas page 177
Link Behaviour ValUueoeuueeeie et tie e iie i iaeeans page 178
Command Line Behaviour page 178
Y 10 0 T=] o page 179
Lock Behaviour page 181
Y 10 0 T=] P page 181
PiNG BERAVIOUL caaeeeetesesererrriesisissississssssssssssssssssssssssssssssassssssssssssssssssssssssssssssssassassssssssassassssssons page 182

This chapter introduces some MapView-specific Behaviours used in examples in this
document. Other Behaviours are described in the ‘Orbit for Multiviewers’ user manual.

147

Behaviours
Local Timer Behaviour

Local Timer Behaviour

A Local Timer Behaviour implements a timer and a counter-timer on a MapView screen.

Behaviours

All

Alarm

Edit Local Timer

Name Local Timer
Interval 3

Interval Units Seconds

v True
b) Edit Properties iate Start False

Auto Reset

Fig. 6-1: Local Timer Behaviour:
a) in ‘Behaviour and Binding’ graphical Editor.
b) Edit Properties.

Table 6-1: Local Timer Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
Interval Text box.
Enter a timer duration.
Interval Units Drop down box.
Select duration time units: seconds, or milliseconds.
Repeat Check box.

« Select to enable repeated timer operation.
For example, with the interval set to 1 second,

a timer repeatedly times out after 1 second and the time value counts
seconds.

+ Deselect to enable one-shot timer operation. The timer times out
once, after the interval time.

148

Orbit MapView
User Manual

Table 6-1: Local Timer Behaviour Properties (continued)

Property Description
Immediate Start | Check box.
Select to run the timer from the beginning.
Auto Reset Text box. (Property is active when Repeat is selected.)
Set timer value at which timer value resets automatically (and continues
counting).
For example, if Auto Reset = 6 and Interval =1,
then the timer value (count) sequence is 0,1,2,3,4,5,0,1,2....
Behaviour Arguments

When the Local Timer Behaviour is invoked, it can have certain arguments which determine
what it does (for example, ‘start’ or ‘stop’).

A Behaviour's (any Behaviour’s) arguments are shown when the cursor is either:

+ hovered over the Behaviour in the ‘Behaviour and Bindings’ graphical editor - see Figure 6-
2a for the Local Timer Behaviour; or

+ hovered over the Behaviour name in the Behaviour list - see Figure 6-2b.

Behaviours

All

Marm _ Hover Ove
Alarm Acknowledgemen

Alarm Mask w
Audio Level

Window

d Caption

Behaviour’s arguments

Intg
Re
Im
Au

Local Timer: Creates a timer local to the schematic. Pas reset| s hs Data event to control.

a) Hover over Local timer in Behaviour and Binding graphical editor

Link

Load Control Screen
Local Timer
Local Value
Lock

Log Field
MV-Flex Control
Pin

Creates a timer local to the schematic. Pasg 'start|reset|stop|pause' gs Data event to control.

b) Hover over Local timer in Behaviour list
Fig. 6-2: Local Timer Behaviour’s Arguments (Hover Cursor over Behaviour)

Table 6-2: Local Timer Behaviour Arguments

Argument

Description

start

Start the timer.

reset

Reset timer, timer value set to zero.
If the timer is running, the timer value continues to count on from zero.

stop

Stop the timer.
A subsequent ‘start’ will set the timer value to 0 and start the timer.

pause

Pause the timer and the timer value is held.
A subsequent ‘start’ will continue the timer and the timer value sequence.

149

Behaviours
Alarm Behaviour

Alarm Behaviour

An Alarm Behaviour connects to an alarm state or to a remote log field giving a Orbit MapView
screen access to the alarm state or log field value via Orbit services.

Edit Alarm

MName Alarm

Mode Single Address

RollCall Address {Address}
Header

Report Status v True

Use Latched State False
Configuration <Click To Edit>

Close

Fig. 6-3: Alarm Behaviour Properties

Table 6-3: Alarm Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
Mode Drop-down box.

Single or multiple addresses mode.
+ Single Address - one RollCall address is monitored.

+ Multiple Addresses/Headers - multiple RollCall addresses and
Log Field headers can be monitored.

RollCall Address Text box. (Grayed-out for ‘Multiple Addresses/Headers’ mode)
Enter RollCall address.

Note: A variable can be used, for example, {Address}.

Header Text box. (Grayed-out for ‘Multiple Addresses/Headers’ mode)

Enter the required Log Field header.
For example, MY_LOG_HEADER.

Report Status Check box.
- Select - Alarm state contributes to overall screen state.

Note: Any Alarm Behaviour with Report Status selected
will contribute to the state of a Link Behaviour.
See Link Behaviour, on page 174, and Link State, on

page 175.
- De-select - Alarm state does not contribute to overall screen
state.

Note: De-selecting Report Status is useful where no
contribution to a Link Behaviour state is needed - for
example, in a banner tool bar which might appear on
several screens.

150

Orbit MapView
User Manual

Table 6-3: Alarm Behaviour Properties (continued)

Property

Description

Use Latched State

Check box.
Select for the Behaviour to use the latched alarm state.
(A latched alarm is useful when an alarm occurs briefly.)
Note: Orbit services provide both a

- normal, ‘live} non-latched Alarm state; and a

« latched Alarm state.

(A latched Alarm state can be reset with the Reset Latch Behaviour,
see Reset Latch Behaviour, on page 158.)

Configuration

Text box.
(Property is active when Multiple Addresses/Headers mode is
selected.)

Click the - symbol to open the Alarm Configuration
dialog to enter RollCall addresses and Log Headers. See Alarm

Configuration Dialog, on page 152.

<Click To Edit>

Configuration

151

Behaviours
Alarm Behaviour

Alarm Configuration Dialog

A list of RollCall addresses and corresponding Log Headers can be entered. The Alarm
Behaviour aggregates all the Log Header values.

Click the - symbol to open the Alarm Configuration dialog.

Edit Alarm

Name Alarm
Mode Multiple Addresses/Headers

Report Status v True
Use Latched State False
Configuration <Click To Edit>

.
‘ Alarm Configuration

Selected Units/Headers:

MY_LOG_HEADER
STATE

Add Unit Add Header Delete

Cancel

Device/Unit address list Log Field header list

Fig. 6-4: Alarm Configuration Dialog

To Enter a RollCall Address

In the Alarm Configuration dialog:
1 Click Add Unit. A new item is added into the list.

2 Double-click on the item and edit it, entering the required RollCall address. This may be a
variable, for example {Address_2}.

This has entered a device/unit address into the address list, left-hand side.

The Log Field header list (right-hand side) for this new address is an empty list.
An empty Log Field header list means that all Log Field headers will be monitored.

If only specific Log Field headers are to be monitored, then these can be listed. A non-empty
Log Field headers list (right-hand side) forms a white list of Log Field headers to be used, listing
the Log Field headers to be used.

152

Orbit MapView
User Manual

To Enter a Specific Log Field Header

Note: If a unit address has no specific log field headers listed in the Alarm
Configuration dialog, then all alarms from the unit are used.

1 Click Add Header. A new item is added into the list.

2 Double-click on the item and edit it, entering the required Log Field header.
A variable name may be used, for example {MyHeader}.

Alternatively, to enter a Log Field header:
3 Click Select... and all accessible units are listed. See Figure 6-5.

ri Alarm Configuration lil—g—hr Filter fields

Available Units/Headers:

Filter: | Clear Filter:

Unit list] Header list

Fig. 6-5: Alarm Configuration Dialog - ‘Select...”

4 Select the required unit item in the unit list on the left-hand side.
All the possible Log Field headers from the selected unit are then listed on the right-hand
side.

Note: Use the Filter fields to filter the unit list or header list as required.

153

Behaviours
Alarm Behaviour

Select unit

-
‘ Alarm Configuration

Available Units/Headers:

Filter:

;-'ig. 6-6: Alarm Configuration Dialog

Filter:

STATE
MY_LOG_HEADER

Select header

Click Add

5 Select the required Log Field header.

6 Click Add.
7 Click OK.

To Delete a Specific Unit Item

1 Select a unit item.
2 Click Delete.

The unit item is deleted.

To Delete a Specific Header Item

1 Select a unit item
and then select a specific header item.

2 Click Delete.
The header item is deleted.

Select Item

‘ Alarm Configuration

Selected Units/Headers

Add Unit Add Header

{New Header}

Fig. 6-7: Alarm Configuration Dialog

154

Click Delete

Orbit MapView
User Manual

Alarm Acknowledge Behaviour

An Alarm Acknowledge Behaviour acknowledges alarms for RollCall addresses and their
corresponding Log Fields.
For example:
« an alarm state of 50 (Warning) is changed to 49 (Acknowledged Warning);
+ an alarm state of 100 (Fail) is changed to 99 (Acknowledged Fail).
The Behaviour is configured for one or more unit addresses/Log Field headers.

(The ‘Configuration’ setting operates like the ‘Configuration’ setting of the Alarm Behaviour,
via an Alarm Configuration dialog. See Alarm Configuration Dialog, on page 152.)

Note: An Alarm Acknowledge Behaviour acts on specific unit address
and log field header alarm(s) in the Orbit services; it does not directly
control an Alarm Behaviour.

The Alarm Acknowledge Behaviour may be given a name to identify it with.

Edit Acknowledge Alarm

Name Acknowledge Alarm
Configuration =<Click To Edit>

Close

a) Edit Settings

‘ Alarm Configuration @éj

Selected Units/Headers:

MY_LOG_HEADER
STATE

Add Unit Add Header Delete

Cancel

b) Define Units/Headers
Fig. 6-8: Alarm Acknowledge Behaviour

155

Behaviours
Alarm Mask Behaviour

Alarm Mask Behaviour

156

An Alarm Mask Behaviour controls the masking of alarms from unit addresses and
corresponding Log Field headers.

Alarm masking is useful in maintenance situations or in concessionary cases (for example, if a
unit is intentionally operating temporarily with one power supply, then warning some related
power supply warning/failure alarms can be masked).

An Alarm Mask Behaviour is configured to mask or to unmask alarms; it is configured for one
or more unit(s)/log header(s).

Note: A masked alarm has an alarm state value of 0.
An unmasked alarm has an alarm state value in the range 1 to 100.
(See State Value 0 to 100, on page 17.)

Edit Alarm Mask

Name

Fig. 6-9: Alarm Mask Behaviour

Table 6-4: Alarm Mask Properties

Property Description
Name Enter a name to identify the Behaviour.
Configuration Text box.

Alarms to be masked are defined here. Specify the unit address and,
optionally, the Log Field headers.

+ Click the symbol to open the Alarm Configuration
dialog to enter RollCall addresses and Log Field headers.
See Alarm Configuration Dialog, on page 152.

Orbit MapView
User Manual

Table 6-4: Alarm Mask Properties (continued)

Property Description
Mask Mode Drop-down box.
Select mask mode.

+ Mask - the specified alarms are masked.

- UnMask - the specified alarms are unmasked.

+ Mask Until Green - mask until the status is ‘OK’ (Green color
indication).

« Mask Until Time - mask the specified alarms for a period of
time. Once the time period has elapsed, the device is included
into the calculation.

(See main menu ‘Tools > Options > Monitoring’ on the
‘Masking’ tab, Tools > Options > Monitoring - Masking tab, on
page 14.)

+ Mask Group - Mask a group of units/devices.

« UnMask Group - Unmask a group of units/devices.

« Apply Invert - Select to set all ‘Warnings’and ‘Failures’ to show
an ‘OK' status.

- Remove invert - Select to revert all “inverted” alarm states
back to show their original state.

Expires Text field (seconds)
Enter the number of seconds over which the mask should be
applied. After this period, it is removed automatically.
If mask is to be applied indefinitely until it is removed, enter 0.
Mask Group Text field.
Specify which Mask Group to mask/unmask.
Note: ‘Mask Groups'are defined as part of the system services
running on the Log Server.
Tag Text field.

Specify which Tagged Mask to operate on.

See Network View, on page 21.

157

Behaviours
Reset Latch Behaviour

Reset Latch Behaviour

A Reset Latch Behaviour unlatches one or more latched alarm(s). This operates on the Orbit
services and the result of this will be subsequently seen by all Alarm Behaviours monitoring a
device’s latched alarm state.

Edit Reset Latch

Name Reset Latch

Configuration =<Click To Edit>

Close

Fig. 6-10: Reset Latch Behaviour

The ‘Configuration’ setting operates like the ‘Configuration’ setting of the Alarm Behaviour via
an Alarm Configuration dialog. See Alarm Configuration Dialog, on page 152.

158

Orbit MapView
User Manual

Log Field Behaviour

A Log Field Behaviour enables a MapView screen to use Log Field messages from RollCall
address - i.e. from a card, a unit or an Orbit Monitoring Service (OMS). A Log Field can be read
and/or written to by a MapView screen with the Log Field Behaviour.

Behaviours

Link

Load Control Screen
Local Timer

Local Value

Log Field

3 Command
lICall+ Command

Edit My Log Field beh

Name
RollCall A

Write Mode

b) Edit Properties

Fig. 6-11: Log Field Behaviour:
a) In Behaviour/Binding Graphical Editor.

b) Edit Properties.

Properties are described in Table 6-5.

Table 6-5: Log Field Behaviour Properties

Property

Description

Name

Enter a name to identify the Behaviour.

RollCall Address

Text box.

Enter a RollCall address.

The Behaviour will look for Log Field headers with this address.
Note: This may be set to be a variable, for example, {Address}.

Headers

A list of Log Field headers for the Behaviour to expose on the
MapView screen.

Either:
- enter a comma-separated list of Log Field headers;

or

159

Behaviours
Log Field Behaviour

160

Table 6-5: Log Field Behaviour Properties (continued)

Property Description
or
« click the icon in the ‘Headers value’field and add headers into
the resulting dialog:
Edit My Log Field beh
Name My Field beh
RollCall Address {Address}
Headers
Write Mode Read/Write
1) Click icon
B orsit B %]
MY_HEADER_1
MY_HEADER_2
2) Click to Add headers
Delete Close
3) Click Close.
Edit My Log Field beh
Name
RollCall Address
Headers
Write Mode
4) Comma-separated list entered as ‘Headers’ property value.
Write Mode Drop-down box.

Specify Behaviour's read/write capability for the Log Fields it
handles.
Options:
- Read Only - Behaviour exposes the Log field values on the
MapView screen but will not write a changed value back.

+ Write Only - Behaviour will write a changed value back but will
not update the Log Field value if it is changed outside of the
Orbit MapView screen.

+ Read/Write - Synchronizes the Behaviour with the Log Field in
both directions (into and out of the Orbit MapView screen).

See Note 1.

Note 1: When Write Mode is set to ‘Write Only’ or ‘Read/Write’ then a

Log Field Behaviour becomes writeable; any changes that Orbit
MapView makes to the Behaviour value will be sent back to the
Orbit Monitoring Service and other parts of the system.

Orbit MapView
User Manual

Figure 6-12 and Figure 6-13 show a Log Field Behaviour instanced on a MapView screen with
an accompanying Label Binding. And Figure 6-14 shows this being exercised.

{~} Variables | ?

Name ~ Type Value

Address Address 0000:EE:00

Filter: New New(N) Delete

0K Cancel Apply

Screen containing Log Field Behaviour
My_Log-Field-Beh.schx (*) €@

Log Field Behaviour Right-click in screen background,
and select ‘Variables...'

RollCall Address: 0000:EE:00 /

‘Address’ variable set to
Behaviour Value 0000:EE:00

MY_HEADER_1:
Log Field Value

MY_HEADER_2:

Log Field Value

Log Field Behaviour Behaviours

dow
Closed Caption

Edit My Log Field beh

Name My Log Field beh
{Addr

Log Field headers used

Fig. 6-12: Log Field Behaviour on MapView Screen

161

Behaviours
Log Field Behaviour

Log Field Behaviour is source

Log Header from source Behaviour is Edit Property
selected Corymon Properties
Name: Property
aviour: My Log Field beh

Widget property to target is selected

Behaviour Value: MY_HEADER_2

Property to bind: "Caption

Bind Rules: Operator Expression

Default

Move Down Move Up

My_Log-Field-Beh.schx €

Log Field Behaviour

RollCall Address: 0000:EE:00

Behaviour Value

MY_HEADER_1:
Log Field Value

MY_HEADER_2:

og Field Value -
% E Double-click
on Binding

)

Behaviours

Fig. 6-13: Property Binding for Label Caption (used with Log Field Behaviour)

162

Orbit MapView
User Manual

In the Network View pane:
Right-click on the item with the target RollCall address ‘0000:EE:00;
and then select ‘Details’ on the context menu.

B Details 000D:EE00 - DOO0:EE:00 (2 [t

Sortby ~ Filter: @) Header (O Value

Header Value

Network View

ring Service
ollCall Log Field header values
0000:EE:00 0000:EE:00 - 1
MapView Service 0000:FF:00 Details | from target R{)IICaII address
Mask

Unit Info

Copy Address

a) Viewing Log Field header values in Network View items

My_Log-Field-Beh.schx €@

Log Field Behaviour

RollCall Address: 0000:EE:00

v
Caption text reflects

MY_HEADER _1: — _ Log Field Behaviour’s

Status: OK header values

Behaviour Value

MY_HEADER_2:
STATUS: OK

b) Exercising Log Field Behaviour
Fig. 6-14: Log Field Being Exercised

163

Behaviours
Log Field Behaviour

#Hash Field# Syntax

164

It is quite common to need to read or to write to Log Field values in a MapView screen in a
control and monitoring application. This can result in many instances of a Log Field Behaviour.
Orbit MapView supports a quick way of creating Log Field Behaviours; this makes the handling
of a large number of Log Field values much easier and less time consuming when designing an
Orbit MapView screen.

Specifying Log Field Header

A#HASH_FIELD# syntax may be used in value fields in Orbit (for property values or Behaviour
values. The required Log Field header name is written between ‘# characters.
For example:

.« #MSGH#
- #AESREF#
Behind the scenes, Orbit MapView adds the necessary Behaviours and Bindings to be able to

monitor the required Log Field. If the Log field changes at MapView screen run time, it will also
change on the MapView screen.

Specifying RollCall Address

When using hash fields, the RollCall address to be used will be taken from:
- ascreen variable called ‘Address’;

- if this does not exist,
it will be taken from a MapView project variable of the same name; and

- if neither exist,
the hash field’s Behaviour is not defined and address 0000:00:00 is used.

It is possible to specify the RollCall address in a hash field. All or part of the address may be
specified:
« #0000:AA:00,MSG# - RollCall address ‘0000.AA.00'is used for the hash field's associated Log
Field Behaviour.
To just specify part of the address:

+ #0000:AA:7? MSG# - With screen/project variable ‘Address’ set to ‘1000:00:02’, then RollCall
address of ‘0000:AA:02'is used in the hash field Behaviour.

Orbit MapView
User Manual

Example

Figure 6-15 shows the hash fields being used, when added to the example shown in Figure 6-
14 on page 163.

My_Log-Field-Beh.schx €

Log Field Behaviour Labels added with caption

property values set to hash fields
RollCall Address: 0000:EE:00

Behaviour Value ...and with Hash Field method

MY_HEADER_1:

Log Field Value
#MY_HEADER_1#
#0000:EE:00,MY_HEADER_1#
MY_HEADER_2:
Log Field Value

Hash Field: #MY_HEADER_2#

Behaviours

-

Acknowledgement

Audio Loudness
Audio Phase

a) Using the #Hash Field# Method for Accessing Log Field Header Values

Log Field Behaviour

Label captions reflect
Log Field header values
Behaviour Value -..and with Hash Field method

RollCall Address: 0000:EE:00

MY_HEADER_1:

Status: OK
Status: OK
Status: OK
MY_HEADER_2:
STATUS: OK

Hash Field: STATUS: OK
b) Exercising #Hash Field# Method

Fig. 6-15: #Hash Field# Method

a) Using the #Hash Field# Method for Accessing Log Field Header Values.
b) Exercising #Hash Field# Method.

165

Behaviours
Log Field Behaviour

<Angle-Bracket> Syntax

166

The hash field syntax (#Hash Field# Syntax, on page 164) invokes a Log Field Behaviour
‘behind-the-scenes’in Orbit.

The ‘angle-bracket’ syntax (<UNIT_STATUS>) invokes both a Log Field Behaviour and an
Alarm Behaviour ‘behind-the-scenes’in Orbit. The State value of the item being monitored is
then used to apply (color) formatting to the log field text, according to the status of the State.

This < > syntax is shown in Figure 6-16 and the resulting exercised MapView screen is shown in
Figure 6-17.

Project ox
2]l My_angle-Bracket schx 3%

RC Addr= 3221:04:01

Hash Feld Angle Bracket Syntax

MEG #MEGHE <MEG>

NAME FNAMEZ <HAME=>

STATE ASTATES <STATE>

INPUT 1 STATE #INPUT_1_STATE# <INPUT_1_STATE>
INPUT 2 STATE #INPUT_2_STATE# <INPUT_2_STATE>

)

Label widgets’ ‘caption’ property
defined with hash fields (# #)

Label widgets'‘caption’ property defined
with Angle Bracket < > Syntax|

Fig. 6-16: MapView Screen with Angle-Bracket < > Syntax

Orbit MapView
User Manual

Project

Log Field state is shown via text color

/A

Angle-B X
RC Addr= 3221:04:01 Hash Field Angle Bracket Syntax
MSG UNIT PRESENT
NAME 01:1QMD00
STATE 100 100
INPUT 1 STATE oK
INPUT 2 STATE FAIL: Lost FAIL: Lost

H Details 3221:04:00 - Frarne 04

Log Fields being monitored from device

Fig. 6-17: Exercised Angle-Bracket < > Syntax

167

Behaviours
GSM Behaviours

GSM Behaviours

Three GSM Behaviours are provided to allow iControl and Densité alarms to be accessed and
used on Orbit screens.

+ GSM Alarm Behaviour, on page 168 - Exposes the GSM alarm state inside an Orbit screen.

« GSM Text Behaviour, on page 169 — Exposes the textual value of a GSM alarm inside an
Orbit screen.

« GSM Mask Behaviour, on page 169 — Exposes current alarm mask state and allows a user to
mask/unmask GSM alarms from inside a screen.

GSM Alarm Behaviour

168

The GSM Alarm Behaviour enables Orbit MapView screens to monitor alarms from Densité
devices. It can be configured for a folder or for an alarm and then its value will be kept up to
date to reflect the current state of that alarm.

Edit GSM Alarm

Name GSM Alarm
URIs {Alarm Uri}
Report Status v True

Fig. 6-18: GSM Alarm Behaviour Edit Properties.

Table 6-6: GSM Alarm Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
URIs Text box.

Enter URI reference(s) to a GSM alarm or to a Network View folder
that is to be monitored by the Behaviour.

If multiple references are entered, then the aggregate state of all is
used.

Report Status Check box.

Select to enable the alarm state to be used by the Orbit MapView
service to calculate overall state of the screen.

Orbit MapView
User Manual

GSM Text Behaviour

The GSM Text Behaviour enables Orbit MapView screens to monitor alarms from Densité
devices. It is used for textual alarms and can be configured for a folder, or for an alarm, and then
its value will be kept up to date to reflect the current state of that alarm.

Edit GSM Text

Name GSM Text
URIs {Alarm Uri}

Fig. 6-19: GSM Text Behaviour Edit Properties.

Table 6-7: GSM Text Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
URIs Text box.

Enter URI reference(s) to a GSM alarm or to a Network View folder
that is to be monitored by the Behaviour.

If multiple references are entered, then the aggregate state of all is
used.

GSM Mask Behaviour

The GSM Mask Behaviour enables Orbit MapView screens to manage masking of alarms for
Densité devices. Masking modes can be changed from Orbit MapView screens.

The GSM Mask Behaviour is executable; it must be configured and then actively executed
(using an Event Binding) on an Orbit MapView screen.

Edit GSM Mask

Name GSM Mask

URIs {Alarm Uri}
Mode Offline

Fig. 6-20: GSM Mask Behaviour Edit Properties.

169

Behaviours
GSM Behaviours

170

Table 6-8: GSM Text Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
URIs Text box.

Enter URI reference(s) to a GSM alarm or to a Network View folder.
These alarm(s) will have their masking mode changed by the
Behaviour.

Mode Drop down box.

Select the masking mode (known as ‘operational mode’inside the
Grass Valley iControl navigator tool) to be applied when the
Behaviour is executed.
Options, set masking mode to:

« Offline

« Online

+ In Maintenance - puts the alarm(s) into maintenance mode.

- Not In Maintenance - brings alarm(s) out of maintenance
mode.

 Inverted
« Not Inverted

GSM Mask Behaviour Value
The GSM Mask Behaviour has a value. This is an array of 3 Boolean values indicating the
current mask mode. The array elements are:

1 Offline mode - Offline enabled = ‘True’; ‘False’if disabled.

2 In Maintenance mode - In maintenance = ‘True’; ‘False’if not.

3 Mask Invert - the current mask invert setting.

Note: If multiple alarm URIs are set on the GSM Mask Behaviour

and if the mask Mode is inconsistent, then

the Behaviour value element will be ‘True'if any of the multiple alarms is
in that mode.

These element values can be used to drive the state of widgets.

Orbit MapView
User Manual

SNMP Behaviours

Two SNMP Behaviours are provided to allow Orbit to access device information from SNMP-
capable devices:

« SNMP Get Behaviour, on page 171 - Reads an SNMP value from a device.
« SNMP Set Behaviour, on page 172 - Writes an SNMP value to a device.

These Behaviours enable the reading and writing of single device values via the SNMP protocol
by an Orbit screen.

Note: The SNMP Get and Set Behaviours are designed for simple
querying of a value and setting a value. For wide-scale monitoring of
multiple SNMP devices a product such as Grass Valley RolISNMP or GSM
should be used.

An SNMP-capable device stores information about its status and configuration in a
management information base (MIB), which has a tree-like structure. Each data element in the

MIB is uniquely referenced by an object identifier (OID). Each OID identifies an element which
can be read or set via SNMP.

Note: For specific information on a device value’s OID:
. refer to vendor device documentation; or
- use a MIB Browser tool to determine.

SNMP Get Behaviour

The SNMP Get Behaviour reads a single OID value from a device and returns the value of the
OID. This value can be used on Orbit screens with other Bindings and Behaviours.

Edit Get SNMP

Name
IP Address

Community public

[31)) .1.3.6.1.2.1.1.1.0
Poll Period 20

Fig. 6-21: SNMP Get Behaviour Edit Properties.

Table 6-9: SNMP Get Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
IP Address Text box.

Enter IP address of the device to query via SNMP.

Community Text box.
Enter SNMP community string.
See vendor documentation about for the device to be accessed.

Note: If Community setting is incorrect, the OID value cannot be
read.

171

Behaviours

SNMP Behaviours
Table 6-9: SNMP Get Behaviour Properties (continued)
Property Description
oID Text box.
Enter object identifier (OID) of the data value in the MIB.
Poll Period Text box.
Enter the time (in seconds) between SNMP Get commands.
SNMP Set Behaviour

The SNMP Set Behaviour writes a single OID value to a device. The Behaviour can be used with
Bindings to set a particular OID value from an Orbit screen.

Note: The SNMP Set Behaviour will not set an OID value again if the same
value is applied to it.

Edit Set SNMP

Name

IP Address 127.0.0.1
Community public
QI

OID Type

Fig. 6-22: SNMP Set Behaviour Edit Properties.

Table 6-10: SNMP Set Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
IP Address Text box.

Enter IP address of the device to write to via SNMP.
Community Text box.

Enter SNMP community string.
See vendor documentation about for the device to be accessed.

Note: If Community is incorrect, the OID value will not be set
(written to).

172

Orbit MapView
User Manual

Table 6-10: SNMP Set Behaviour Properties (continued)

Property Description
oiD Text box.

Enter object identifier (OID) of the data value in the MIB.
OID Type Drop down box.

Select the data type of the OID value being written (set).
Options:

String

32-bit Integer

64-bit Counter
Bits
IP Address

Object Identifier (01D}

Time Ticks

See vendor documentation for the OID type.

173

Behaviours
Link Behaviour

Link Behaviour

Introduction

In an Orbit MapView project there will typically be many screens with some hierarchical
structure. The Link Behaviour allows users to navigate around the MapView project screen
hierarchy. A Link Behaviour may be attached to a button which links to a screen below in the

hierarchy. See Figure 6-23.

High-level Screen

High-level screen

Area A

Area B

Area C

/

Click on button

AN

Area B Overview

Frame 1

Frame 2

fi

Frame 3

Frame 4

Click on button

AN

Fig. 6-23: MapView Screen Hierarchy Example

State Information

174

N

Low-level screen

Area B Frame 2 - State

<Input Lost>

MapView screens may contain differing amounts of live information about device(s) and/or
module(s); this may range from complex details about a device/module to a simple high-level
status with an overall ‘good/bad’ indication. For monitoring applications, the user requires to
be presented with up to date information, whichever screen is being shown.

A MapView monitoring project can be designed so that when any error occurs in a low-level
screen, the ‘error state’is reflected up the project screen hierarchy and shown at higher levels.
For example, a device error shown in a low-level screen can cause a higher-level button to go
red, indicating an ‘error state’on the low-level screen. The states of all devices in a system being

Orbit MapView
User Manual

Link State

monitored will change over time and, therefore, all states shown on MapView screens are ‘live’
and are actively changing.

The live ‘states’ of each MapView screen all need to be known to an Orbit MapView project to
allow a user to quickly see any errors or warnings and then drill down to the source of the
problem (for example, a lost input to a device).

Schematic State

Each MapView screen file may have a ‘state’ based on information within it. In order to have a
‘state’, a screen file must have at least one Alarm Behaviour (defined explicitly, or defined
using the shorthand <> notation).

The Schematic State is taken to be the aggregate of each of the Alarm Behaviour values
within the screen. See Alarm Behaviour, on page 150.

A MapView project may comprise a hierarchy of screens and each screen will have some
Schematic State value computed from the screen’s constituent ‘state’ values. For monitoring
applications, it is essential to see the state of a lower-level screen on a higher-level button that
links to it. This hierarchy of states is called Link State. The Link State of an Orbit MapView
project needs to be continually calculated to ensure that any displayed screen shows the
current ‘state’ of any linked-to, lower-level screen(s).

MapView Service and Link State

The Link State for an Orbit MapView project is calculated by the Orbit MapView Service:
Calculation is done ‘server-side’, not client-side. The Orbit MapView Service is responsible for
traversing the whole MapView project, calculating the Link State and publishing live Link
State information for use by any subscribing Orbit client applications.

To do this, the service needs access to the same Orbit MapView project as is being run by the
Orbit MapView client. This then enables button widgets etc. on all project screens to have their
full Link State automatically kept up to date when a screen is opened by a user in Orbit
MapView.

175

Behaviours
Link Behaviour

Link Behaviour and Properties

Link Behaviour

My_Link-Eg-2_HighLevel.schx @ _

High-level Schematic

Behaviours

All

Alarm wledgement
Alarm I

Double-clic

Edit Link
Link Behaviour in Behaviour list T Tor
Single Click v True
Path /schematics/My_Link-Eg-2_LowLevel.schx
Link Mode Schematic Link
Target Application Window

Report Link Status v True
le File Path

Fig. 6-24: Link Behaviour and Properties

Table 6-11 describes the Link Behaviour properties.

Table 6-11: Link Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
Single Click Check box.

To activate the link:
« Select check box for single-click.
« Deselect check box for double-click.

Path Set the screen to be linked to, including file path.

Note: The file can be any file that Orbit can open, or it can be a URL, such as
http://grassvalley.com.

176

http://grassvalley.com
http://grassvalley.com

Orbit MapView
User Manual

Table 6-11: Link Behaviour Properties (continued)

Property

Description

Link Mode

Select type of link:
+ Schematic link.

- Back button link - Navigate the user backwards through the history of opened
screens.

» Forward button link - Navigate the user forwards through the history of opened
screens.

Target

Select the target window where the linked-to file should be opened.
Options:
+ Application window - Targets the main tab view.
« Monitor 1 to N - Undocked on one of the monitors of the Orbit client computer.
« Popup - Targets a popup window, if any are defined in Orbit.
(To define popup windows, see ‘Tools > Options > Pop-ups’ from the main menu.)

Note: For more information,
refer to the ‘Orbit - Introduction’ user manual in the ‘Orbit Main Menu Bar’ chapter and
Tools > Options - Pop-ups’ sub-section.

Report Link Status

Check box. (Normally selected.)
- Select to contribute to the overall ‘state’ of the screen.

- Deselect to configure the Link Behaviour to not contribute to the overall schematic
‘state’

Deselected example: A tool bar on a screen, or a banner, with one or more link.
A screen’s ‘Home’ button, when a ‘Home'button is on a low-level screen, would be
designed to link to the top-level screen and the button should show the schematic
state of the linked-to screen (in this case the top-level screen). However, the ‘Home’
button’s state should not to contribute to the low-level screen’s state.

Deselecting this option for the Link Behaviour associated with such a ‘Home’ button
will exclude it from the calculation of the overall state of the low-level screen.

Variable File Path

File path to a text file containing a list of variables to be used when loading the linked-to
screen.

This is useful for re-using one screen several times using different variable values.

(See Example - Screen Link States and Screen Re-Use with Variable Files, on page 243, for
an example using a variable file.)

Schematic Variables
Settings

A list of variables on the linked-to screen with specific settings to be used with the link.
The list is obtained from the screen and any specified variable file.
The list may be edited.

When the link is used, values of the specified variables are used and may override those on
the screen or in a variable file. This allows a single, generic linked-to screen to be flexibly
reused for many different variable values.

Create a Link Between Two Screens

A link between two screens can be created by:
+ adding a Button widget and a Link Behaviour and manually configuring them

(see Link Behaviour with Button Widget Example, on page 237);

or

- drag-dropping a screen (from the Project View) onto a screen open in a schematic editor

(see Drag-Drop Link Method, on page 242).

177

Behaviours
Command Line Behaviour

Link Behaviour Value

When a project is running, the Link Behaviour value is the resulting state value. (This is an
integer in the range 0 to 100, inclusive - see State Values Table 2-3 on page 17.) The Link
Behaviour value may be bound to and used to control other widget properties with a Property
Binding.

Command Line Behaviour

A Command Line Behaviour runs an application or command file in a command line window
on a local computer (on the Orbit client computer, or on the Orbit Services server computer if
the Behaviour is in an Orbit Logic File). This enables applications or command files to be

executed by a MapView screen. Initial arguments can be passed to the application from the
MapView screen.

Behaviours

Display Details
Local Timer
Local Value
Lock

¥

Command Line: Runs a separate process on the command line.
nmand
Page

Bindings
a) Behaviour in Graphical Editor

Double-click

Edit Command Line Beh

Property

Mame

Command

Arguments PropArg_1 PropArg_2
Result Type Detached

Run Hidden False

b) Edit Properties

Fig. 6-25: Command Line Behaviour:
a) in ‘Behaviour and Binding’ Graphical Editor.
b) Edit Properties.

178

Orbit MapView
User Manual

Arguments

Table 6-12: Command Line Behaviour Properties

Property

Description

Name

Enter a name to identify the Behaviour.

Command

Full path to the application or command file to be executed.

For example, C:\temp\My_Cmd_File bat

Arguments

Enter fixed arguments to be passed to the executed
application/command file.
Use a comma-separated and/or space-separated list.

For example, PropArg_1 PropArg_2

Result Type

Drop down box.
Options:
- Exit Code - Orbit MapView waits for the exit code of the application
that is run.
- Standard Output - Orbit MapView waits for and uses the ‘standard
output’ from the application that is run.

- Detached - Orbit MapView does not wait for any return value(s) from
the application that is run.

Run Hidden

Check box.
« Select (True) to hide the command line window while running.
+ Deselect (False) to show the command line window while running.

Arguments specified in the properties will be passed to the application/command file when
the Command Line Behaviour is run.

If the Behaviour is invoked by a Binding (for example an Event Binding) then further
arguments can be defined in the Binding which are also passed to the Command Line
Behaviour when it is executed. See Figure 6-26.

Note: Arguments specified in an invoking Binding can be fixed, literal
values, or values from other Behaviours.

179

Behaviours
Command Line Behaviour

| My_Cmd-Line_File - Notepad =NACN X
File Edit Format View Help
echo off -
c'Iﬁ]
My Crrdl ine schy echo
My_Crnd-Line.schx ecno H Example orbit Command Line Behaviour script:
echo
echo [] Arguments passed:
Exercise Command Line Behaviour echo []
echo [] 1) [%1] L
! echo [] 2) [%2] 3
i echo [] 3) [%3]
Run Cmd Line Beh echo [] 4) [%4]
echo [] 5) [%5]
b echo []
pause
rem End of file.
4 I3

Jisplay Details Edit Command Line Beh

Local Timer

Local Value Property

Detached
Rur Hidden False

Nensita

Bindings

Command Line Behaviour arguments specified in:
1) Command Line Behaviour properties.
2) an invoking (Event) Binding.

Edit Event

Common Properties

Mame: Event

Source O Condition

@® Handle widget event
click i

O Handle behaviour value change

a) Button widget with Event Binding invoking a Command Line Behaviour

B C\Windows\system32\cmd.exe =
ommand Line Bel
Arguments from:

» the Command Line
Behaviour properties

+ the invoking Binding

b) Command Window Run by Command Line Behaviour

Fig. 6-26: Argument Passing to a Command Line Behaviour

180

Orbit MapView
User Manual

Lock Behaviour

A Lock Behaviour will lock or unlock the Orbit MapView screen, in a similar way to the Lock
icon in the Orbit main tool bar.

File Edit Project View Tools Window RollCall

iControl Control and Monitoring Help
+
o -

Scale (81%) -
Locks Orbit to prevent accidental changes.
a) Lock Icon in Main Tool Bar

Edit Lock

Name

b) Lock Behaviour Settings
Fig. 6-27: Lock Behaviour:

Table 6-13: Lock Behaviour Properties

Property Description

Name

Enter a name to identify the Behaviour.

Arguments

When the Lock Behaviour is invoked, it can have certain arguments which determine what it
does (for example, ‘lock’ or ‘unlock’).

Table 6-14: Lock Behaviour Arguments

Argument Description
lock Lock the Orbit MapView project screen.
unlock Unlock the Orbit MapView project screen.

181

Behaviours
Ping Behaviour

Ping Behaviour

A Ping Behaviour will regularly ping an IP address and report an ‘OK’ or a ‘Fail’ result via the
Behaviour’s value.

Edit Ping

Name

IP Address 10.162.51.207
Interval 3000

OK Result 1

Fail Result 100

Fig. 6-28: Ping Behaviour Settings

Table 6-15: Ping Behaviour Properties

Property Description
Name Enter a name to identify the Behaviour.
IP Address Text box.

Enter IP address.

Interval Text box.

Interval (ms) between Ping commands.

OK Result Text box.

Enter value to use if Ping is successful.

Fail Result Text box.
Enter value to use if Ping fails.

182

7 Examples with Bindings

Summary
Examples with Bindings
Example - Direct Binding with a Slider Widget page 184
Create SCrEONttt et e e e e e page 184
Exercise the Slider Example.cooiuiiiiiiiii ittt ieaaiannns page 185
Add aFurtRer SIder. oo ettt i ie e page 186
Example - Property Binding and Tally Lamp Widget page 189
(@1 1 (= Yol (=12 o P page 189
Exercise the EXAMPIe.ou ettt ittt ettt page 191
Example - String Op Binding and Math Binding.................cecveveseeeseune. page 193
Step 1: Get Datafrom DeViICe.couueie ettt page 194
Step 2: Extract the Textual Information (String Op Binding) page 195
Step 3: Determine a Divisor (Mapped Binding)..............cccoviiiiiiiiiinni.. page 196
Step 4: Convert the Data Rate Value to Gbits/sec (Math Binding)................... page 197
Exercise the EXAMPIe. ...ttt ettt page 198
Example - Logical Binding and Simulated GPI or Alarm State page 201
BUild the EXAMPIe. et et ettt ieieaenas page 201
Exercise the Logical Binding.............ouueeiuuneie it iieineiaeeanenn, page 206
Controlling Border COIOr ...ttt ettt e e e ieeas page 208
Example - Event Binding and ‘Taking’ a Slider Value page 211
BUild the EXampPle.o.ee et e ettt iaeens page 211
Exercise the Event Bindingc.ouueuiiiiieiie it ieeiiaeinann, page 214
Example - Button Click Increments a Value by One page 215
BUildthe EXample.ooe et ettt ettt ieaans page 215
Exercise the EXAmMPIe. ...t e et ettt page 217
Example - Forming a Text String for a Command Line Behaviour page 218
BUildthe EXample.oe et ettt page 218
Adding SOMEDEDUGot et e e e page 222
Exercise the EXAMPIe.ttt ettt ittt i e ieiaaanns page 223
Binding Execution Ordero.cervereenss page 225
Bindings Controlling a BehaviourValuecccoviiiiiiiiiiiiiniiinna... page 225
Determining Binding Execution Order.ouueuieeiiieeiineennneennnenn. page 225
Exercising the EXAMPIE.ttt ettt ittt page 228

This chapter presents some MapView-specific screen examples showing the use of some
Bindings.

183

Examples with Bindings
Example - Direct Binding with a Slider Widget

Example - Direct Binding with a Slider Widget

Slider widget:

[Nl NENEX-2ENCN B |

This example creates a slider bound to a Behaviour using a Direct Binding.

This example uses:
+ Widgets - Slider.
+ Bindings - Direct.
« Behaviours - Local Value.

Create Screen
1 Open a new screen.
2 Add a Slider widget to the screen.
3 Select the Slider widget and open the ‘Behaviours and Bindings’ graphic editor.
(Click on the Edit Behaviours button, ":)

4 Click on ‘Local Value'in the Behaviours list to add a Local Value Behaviour box to the
graphic editor.

Orbit recognizes what is being done and automatically:
« names the Behaviour “Slider Value”; and
- adds a Direct binding with Behaviour, Binding and widget connected.
See Figure 7-1.
5 Click Save.

My_Slider-Eg.schx €3

Slider widget:

E

0

Local Value Direct Binding
Behaviou

Fig. 7-1: Slider Widget and ‘Slider Value’ Local Value Behaviour with a Direct Binding

Local Value

184

Orbit MapView
User Manual

Exercise the Slider Example

Slider widget'’s
slider bar
Test button

My_Slider-Eg.schx € Properties
Dime

Position

¥

[i} Size
Width
Height

Custom

Default
Behaviour

All
Command Line

Update on Drag

Min Value 0.00
Load Control Screen 100.00
Local Timer C tio Horizontal
Local Value <t 1.00

r.-j\.-'—FIex: Control Behaviour and Binding e e
1 Command graphical edito

nmand
S Slider Value
CNM CI iti
SNMP Set Initial Value

Scope Internal

Bindings

Local Value Behaviour and its value

Fig. 7-2: Exercising Slider Widget Example

1 Enter test mode (click on the Test button, .).
2 Exercise the slider (drag its slider bar).

When the slider is dragged and then released, the value is shown in the ‘Behaviour and
Binding’ graphic editor and the Local Value Behaviour’s value is updated.

See Figure 7-3.

Here, the Slider widget value is only updated when the slider is released after dragging.
However, the Slider widget value may be updated while the slider is dragged.
To select this mode of slider value operation:

3 End the exercising by clicking the Test button again.
This enters ‘Design Mode"
4 Select the Slider widget and change a widget property in the Property box:
+ Set the ‘Update on Drag’ property to ‘True'

Note: If the Properties box is blank, then select the screen background and then re-select
the widget.

5 Click Save.

185

Examples with Bindings
Example - Direct Binding with a Slider Widget

6 Re-enter test mode by clicking on the Test button.
7 Re-exercise the slider.

When the slider is dragged, the Slider widget value is shown in the ‘Behaviour and
Binding’ graphic editor, and the Local Value Behaviour’s value, is continually updated
without having to release the slider.

1) Slider dragged 26%.

2) Slider value shown.

Slider widget:

All
Command Line
Densite

Text
Load Control Screen
Local Timer

3) Slider value reflected on Local Value Behaviour
Fig. 7-3: Exercising Slider Widget and ‘Slider Value’ Local Value Behaviour with a Direct Binding

8 To end the exercising, click the Test button.

This enters ‘Design Mode"

Add a Further Slider

186

A second slider may be added and connected to the first:
In ‘Design Mode”:

1 Add a second Slider widget to the screen.

2 Setits ‘Update on Drag’ property to ‘True’

3 Select the new slider and add a Direct Binding.

4

Connect the new Direct Binding to the Local Value Behaviour that is connected to the first

Slider. (Select this with the ‘Source Behaviour ‘button on the Binding's edit screen.)
5 Click Save.
See Figure 7-4.

Orbit MapView
User Manual

Test button

My_2Slider-Eg.schx (*) @

Slider 1 widget:

Second slider added.

Slider 2 widget:

Behaviour

All
Command Line

Local Timer

. . . Local Value
Direct Binding connects ey
slider 2’s value to the

Local Value Behaviour of slider 1.

SNMP Set

Bindings

Fig. 7-4: Second Slider Widget Added

Now exercise these connected sliders:
6 Click the Test button to exercise the two-slider screen.

The sliders are now synchronized: Move one slider and the second also changes position,
and vice versa. See Figure 7-5 on page 188.

7 To end the exercising, click the Test button.

This enters ‘Design Mode"

187

Examples with Bindings
Example - Direct Binding with a Slider Widget

My_2Slider-Eg.schx @

Slider 1 widget:

Move Slider 1.

My_2Slider-Eg.schx € Slider 2 follows.

Slider 1 widget:

Behaviour

ntrol Screen

My_2Slider-Eg.schx €@

Slider 1 widget:

Behaviou Move Slldel 2.

Command Line Sllder 1 fO”OWS.

Seroon

My_25lider-Eg.schx €

Behaviour

Load Control Screen

Fig. 7-5: Exercising Two Sliders

188

Orbit MapView
User Manual

Example - Property Binding and Tally Lamp Widget

Create Screen

Tally Lamp widget:

This example creates a slider to control a tally lamp color using a Property Binding.

The example uses:
« Widgets - Tally Lamp, Slider.
+ Bindings - Property, Direct.
« Behaviours - Local Value.

1 Open a new screen.

2 Add a Slider widget to the screen.

3 Select the Slider widget and open the ‘Behaviours and Bindings’ graphic editor.
(Click on the Edit Behaviours button, ":')

4 Click on ‘Local Value'in the Behaviours list to add a Local Value Behaviour to the graphic
editor.

Orbit recognizes what is being done and automatically names the Behaviour “Slider Value”
and adds a Direct binding with Behaviour, Binding and widget connected. See Figure 7-6.

5 Click Save.

Slider widget:

:

0

Behaviour

Al

Command Line
Densite

GSM Alarm

GSM Mask

GSM Text

Load Control Screen
Local Timer

Local Value

Fig. 7-6: Slider Widget and ‘Slider Value’ Local Value Behaviour with a Direct Binding

189

Examples with Bindings
Example - Property Binding and Tally Lamp Widget

6 Add aLabel widget to the screen, select it and open the ‘Behaviours and Bindings’ graphic
editor.

7 Add a Direct Binding.
8 Double-click on the Direct Binding to edit its properties.

9 Set the source Behaviour to be the Local Value Behaviour which holds the Slider widget
value.

10 Click Close.
11 Click Save.

The label will now usefully display the slider value on screen when the screen is run.
12 Add a Tally Lamp widget to the screen. See Figure 7-7.

My_Property-Binding.schx (*) €

Slider widget:
O

0

Label widget showing Slider widget’s value.
Slider value = Slider value shown here!

=

Tally Lamp widget:

 Ta"y Lamp widget

Behaviour:

All

Alarm
Command Line

GSM Text

Fig. 7-7: Tally Lamp Added

13 Select the Tally Lamp widget and open the ‘Behaviours and Bindings’ graphic editor.
14 Add a Property Binding and double-click on it to edit its properties.
15 Set:

« 'Source Behaviour'to be the Local Value Behaviour holding the slider value.

« Set the ‘Property to Bind'to be ‘Tally Lamp Color"

+ Set up ‘Bind Rules’ as shown in Figure 7-8.

190

Orbit MapView
User Manual

Tally Lamp color

Edit My Property Binding

Common Properties

Mame: My Property Binding

Source Behaviour: Slider Value

Bind Rules
Property to bind: 'Lamp Color
Bind Rules: Operator
Greater Than Red
Greater Than 75 Amber
Default rule last. Default Green

Move Down Move Up Al Delete

Fig. 7-8: Setting the Property Binding’s Properties

16 Click Close. Click Save. Click Save Project.

The slider value is now bound to the tally lamp color and the slider value range (0-100) is
mapped to the lamp color values for ‘Red; ‘Green; and ‘Yellow' (1, 2, and 3 respectively).

Exercise the Example

1 To enter ‘Run Mode; click the Run Mode icon in the main tool bar, see Figure 7-9.

Run Mode icon
B My_C&M Bindings =&

File Edit Project View Tools Window Ro\Call jControl Control and Monitoring Help
° 3y Scale (84%) ~ '*
Project ¢ Run Model g0 ey @
Slider widget: Default *
O

0

Slider value = Slider value shown here.

Tally Lamp widget:

My_Property-Binding.schx

ider-Eg.schx

B them

configuration.prj Behaviour:

All

Alarm

Alarm Acknowledge
Alarm

Audio Le

Audio Loudness
Audio Phase

Fig. 7-9: Enter Run Mode

Network View

191

Examples with Bindings
Example - Property Binding and Tally Lamp Widget

2 Exercise the slider.

When the slider is dragged and released, the lamp color changes according to the Bind
rules set up.

See Figure 7-10.

My_Praperty-Binding.schx € My_Property-Binding.schx €

100

Slider widget: Slider widget:
O O
0 100 0
Slider value = 0 Slider value = 59

Tally Lamp widget: 6 Tally Lamp widget: 6

a) Slider value =0, and 59, Tally lamp is green.

My_Property-Binding.schx €

Slider widget:
O
0 100
Slider value = 76
Tally Lamp widget: O
b) Slider value = 76, Tally lamp is yellow.
My_Property-Binding.schx €
Slider widget:
O
0 100

Slider value = 95

Tally Lamp widget: O

c) Slider value = 95, Tally lamp is red.

Fig. 7-10: Exercising Slider and Tally Lamp

3 To end the exercising, click the Design Mode icon in the main tool bar.

Tools Window RollCall iControl Control and Monito

Design Mode

This enters ‘Design Mode"

192

Orbit MapView
User Manual

Example - String Op Binding and Math Binding

Gbits/sec= GBits/sec
Mbits/sec> GBits/sec
kbits/sec = GBits/sec

This example processes log field messages from some device issuing log messages in a RollCall
system. The example shows how to use a log field value and convert it into

a 'Gbits/sec’ figure, which may then be used and further summed with other log field figures,
as required.

The example uses:
» Widgets - none.
« Bindings - String Op, Math, Mapped.
- Behaviours - Log Field, Local Value.

The monitored log messages indicate a data rate value (for example, data rate through a

network switch). The log field value will change from being Gbits, Mbits, etc. as the data rate
changes.

For example, a log field may contain:
10.4 Gbits/sec’; ‘1000 Mbits/sec’; ‘1250 Kbits/sec’; or ‘900 bits/sec’.

To convert to Gbits/sec, we need to extract the numeric part of the log field message and the
textual part. And then derive a divisor value from the textual part (see Table 7-1) and use this
on the numeric value to yield a normalized Gbits/sec result.

Table 7-1: Divisor

Textual Part Divisor Value
Gbit/sec 1.0

Mbit/sec 1000.0
Kbit/sec 1000000.0
bit/sec 1000000000.0

We can do all this purely in Orbit, with no special coding. The steps involved are described
below:

1 Step 1: Get Data from Device, on page 194

2 Step 2: Extract the Textual Information (String Op Binding), on page 195.

3 Step 3: Determine a Divisor (Mapped Binding), on page 196

4 Step 4: Convert the Data Rate Value to Gbits/sec (Math Binding), on page 197

193

Examples with Bindings
Example - String Op Binding and Math Binding

Step 1: Get Data from Device

1 Open a new Orbit MapView screen.

2 Open the ‘Behaviours and Bindings’ graphical editor. (Click on the Edit Behaviours
button.) And ensure no item is selected in the screen.

3 Add a Log Field Behaviour to the ‘Behaviours and Bindings’ graphical editor.
4 Double-click on the Log Field Behaviour and configure it:
- Enter a new, meaningful Name. (E.g. ‘Log Field Beh’)

« Enter a RollCall address. Use an Orbit screen variable for flexibility, e.g. {Address}.
(Ultimately, this must be set to the RollCall address of the system device being
monitored.)

- Enter a RollCall log field header name for the Behaviour to use, i.e. the field containing
the data information. For example, LANPORT_1_TRAFFIC_IN for data rate information.

Edit Log Field Read Beh

Name Log Field Read Beh
RollCall Address {Address}

Headers LANPORT_1_TRAFFIC_IN
Write Mode Read Only

5 Click Close.
6 Right-click in the screen background and select ‘Variables...".

7 Set the screen variable ‘Address’to the monitored device’s RollCall address.
For example, ‘0000:E1:00'.
Click OK.

r{---'l' Variables l P

Name ~ Type

Address Address 0000:E1:00

Filter: New(M) Delete

Cancel Apply

8 Click Save.

The Log Field Behaviour value will contain the required log message text from the device at
the RollCall address.

Note: The log field message text will be of the form: 10.4 Gbits/sec

194

Orbit MapView
User Manual

Step 2: Extract the Textual Information (String Op Binding)
1 Add a String Op Binding to the screen in the ‘Behaviours and Bindings’ graphical editor.
2 Double-click on the Binding to configure it:
« Enter a new, meaningful Name.

« Select the (Log Field) Behaviour to use as input string source.
And select the header to use.

« Select the ‘Substring after’ operation.
And set ‘Search Term’to be a space character.

(This get the textual part of the message, after the numeric value.)
3 Place the result in a new, target Local Value Behaviour. (E.g. ‘Textual Part Beh’)

Edit String Op Bind
Common Properties

Name: String Op Bind|

Source Function Target

Input: Log Field Read Beh LANPORT_1_TRAFFIC_IN ~ Select Function: Substring after - Result: Textual Part Beh

Length:

Fig. 7-11: String Op Binding Settings

4 Click Close. Click Save.

The String Op Binding extracts the textual part of the log message and places it into the Local
Value Behaviour.

195

Examples with Bindings
Example - String Op Binding and Math Binding

Step 3: Determine a Divisor (Mapped Binding)

1 Add a Mapped Binding to the screen in the ‘Behaviours and Bindings’ graphical editor.
2 Configure the Binding:

« Enter a meaningful Name.

+ Source is the ‘Textual Part Beh'

+ Set Bind Rules as shown in Figure 7-12.

- Set the target for the result of the Bind Rules to be a new, target Local Value
Behaviour. (E.g. ‘Divisor Value Beh’)

Edit Mapped Bind

Common Properties

Name: Mapped Bind|

Source Behaviour: Textual Part Beh

Bind Rules: Operator 5io Result

Contains Text Gbits 1.0
Contains Text Mbit 1000.0
Contains Text

Contains Text

Move Down Move Up A Delete

Target: Divisor Value Beh

Fig. 7-12: Mapped Binding Settings, Bind Rules Shown

3 Click Close. Click Save.

The Mapped Binding determines a divisor value and stores it in the Local Value Behaviour.

196

Orbit MapView
User Manual

Step 4: Convert the Data Rate Value to Gbits/sec (Math Binding)

1 Add a Math Binding to the screen in the ‘Behaviours and Bindings’ graphical editor.
2 Configure:

« Select the ‘Log Field Read Beh’ Behaviour with its corresponding header as the LHS
input.

+ Select the ‘Divide’ operator.
+ Select the ‘Divisor Value Beh’ Behaviour as the RHS input.

« Select a new, target Local Value Behaviour for the final result. (‘Gbit/sec Data Rate
Beh’)

Edit Math Bind

Commeon Properties

Name: Math Bind|

Operation Target
LHS: Log Field Read Beh LANPORT_1_TRAFFIC_IN ~ Select Result: Gbit/sec Data Rate Beh
Operator: | Divide

RHS: Divisor Value Beh

Fig. 7-13: Math Binding Settings

3 Click Close. Click Save.
The Local Value Behaviour will contain the computed data rate result in units of ‘Gbits/sec’.

The resulting screen contains no widgets, only Behaviours and Bindings. See Figure 7-14.

My-Log-Field-Eg_Text-Edit.schx €

Screen contains no widgets.

Test button

Behaviours L IVal Behavi
Al String Op Binding A Sl

Alarm
Alarm Acknowledgement

Somrand & Computed
Disphla-y Details data rate value

Email

o Log Field Behaviou Mapped Binding

Bindings

Math Binding

Fig. 7-14: Screen and Behaviours and Bindings

197

Examples with Bindings
Example - String Op Binding and Math Binding

Exercise the Example

Test Stimulus

For the purposes of this example, it is assumed that some external RollCall device is issuing log
messages that can be monitored. This forms the stimulus for exercising the example. Such a
device and its log messages may be seen in the Network View.

Behaviours

All

Alarm

Alarm A
Network View ¥ Alar

User
[8¥ Monitoring Service
RollCall
0000:E1:00 0000:EL:00
MapView Service 0000:FF:0) | Details
Mask
Unit Info
Copy Address |
st R LOg messages from
Right-click and select ‘Details’§ device at RollCall

Bindings address 0000:E1:00

‘ Details 0000:E1:00 - 0000:E1:00

Sortby - Filter: @) Meader O Value Clear

Header Value

%

Fig. 7-15: External Device in Network View

Note: If there is no suitable external device at the time of exercising the
example, then a dummy test source of data may be set up:

+ Replace the Log Field Behaviour, which contains the monitored log
message, by a Text Edit widget.

« Connect the widget to a Local Value Behaviour.
When exercising a widget-under-test, enter message text into the Text

Edit widget. The resulting Local Value Behaviour value can be used as a
stimulus for exercising the widget-under-test.

198

Orbit MapView
User Manual

Exercising

To exercise the example:
1 Click the Test button.

The resulting exercising is shown in Figure 7-16a, b and c.

123456 Gbits/sec stimulus

‘ Details 0000:E1:00 - 0000:E1:00
Behaviours
Filter: @® Header O value Clear
All
Alarm
m Acknowledgement

Value

123456 Gbits/sec resulting value

Bindings

123.456 Mbits/sec stimulug

‘ Details 0000:E1:00 - 0000:E1:00
Behaviours
Sort by - Filter: @® Header O value
All
Alarm
Alarm Acknowledgement

Value

Audio Level
Audio Loudne

123.456 Gbits/sec resulting value

Bindings

123456 kbits/sec stimulus

B Details 0000:E1:00 - 0000:EL:00
Behaviours
Filter: @ Header O Value
All
Alarm
Alarm Acknowledgement

Value

Audio Level
Audio Loudne

Closed Caption

-cnmmand ine
L L 0.123456 Gbits/sec resulting value

¢

Bindings

Fig. 7-16: Exercising: a) Gbits/sec; b) Mbits/sec; and c) kbits/sec.

199

Examples with Bindings
Example - String Op Binding and Math Binding

As the log field string changes value to ‘Gbits/sec; ‘Mbits/sec’ and ‘kbits/sec’ the final value
will always be in ‘GBits/sec’ units. (This normalized value can then be used elsewhere in
Orbit, as required.)

2 Click the Test button again to end Test mode and enter ‘Design Mode'.

Note: Component with no widgets:
You can put this functionality inside a component with no widgets and
then re-use it on many screens.

With such a component on a screen:
« create a Local Value Behaviour at the component instance on the
screen; and

« use a Mapped Binding with a single default rule to copy the
component value into the screen.

200

Orbit MapView
User Manual

Example - Logical Binding and Simulated GPI or Alarm State

Input stimuli: Lamp widget
X GPI Asserted

GPI In

Input Status (0 OK; 100 Error State)

0

The example below simulates an Alarm state value (from some source) in order to provide a
stimulus for exercising the Logical Binding.

This example uses:
+ Widgets - Lamp, Check Box, Text Edit.
- Bindings - Logical.
« Behaviours - Local Value.

Note: Orbit MapView can show an on-screen alarm triggered by one or
more external device GPIs or by some device video input error. For
instance, an MV-8 series multiviewer’s GPI port values or video input
status are exposed as RollCall commands to Orbit and Orbit Behaviours
are used to get information.

Typically, these Behaviours return values of ‘0" or ‘1, or some state value
(in the range 0 to 100, where 100 signifies an error).

(This example simulates an alarm source for the purposes of exercising the
Logical Binding.)

Build the Example
This example describes how to illuminate a lamp from Behaviour values that can be O or 1, or 0
to 100.
1 Open a screen schematic (C&M project).
2 AddalLamp widget.
3 Add a Check Box widget.
4 Add a Text Edit widget.
See Figure 7-17.

201

Examples with Bindings
Example - Logical Binding and Simulated GPI or Alarm State

My_Logical-Binding_Eg.schx €

Input stimuli: Lamp widget

X GPI Asserted
[]GPIIn

Input Status (0 OK; 100 Error State)

Fig. 7-17: Widgets Added

The following are carried out with the ‘Behaviours and Bindings’ graphical editor:

5 Click on the Edit Behavours button, fo X to open the ‘Behaviours and Bindings’
graphical editor. <

6 Select the Check Box widget and add a Local Value Behaviour.

A Check Box Binding is automatically added, connecting the Check Box widget to the
Local Value Behaviour.

202

Orbit MapView
User Manual

7 Edit Binding settings as shown in Figure 7-18.

My_Logical-Binding_Eg.schx €

Input stimuli:

Lamp widget

X GPI Asserted
GPI In E

C

Input Status (0 OK; 100 Error State)

Behaviours

All i
Alarm Acknowledgem
Alarm Mask

Close Window
Command Line

Densite

Display Details

a) Check Box Widget and Behaviours and Bindings

Edit My Checkbox Bind

Commeon Properties
Name: My Checkbox Bind

Source Behaviour: My GPI Stimulus Beh

Checked Value: 1

Unchecked Value: 0

b) Check Box Binding Settings
Fig. 7-18: Check Box Widget Behaviours and Bindings

8 Click Close.
9 (lick Save.
10 Select the Text Edit widget and add a Local Value Behaviour.
A Direct Binding is automatically added.

203

Examples with Bindings

Example - Logical Binding and Simulated GPI or Alarm State

204

11 Edit Binding settings as shown in Figure 7-19.

My_Logical-Binding_Eg.schx €3

Input stimuli:

Lamp widget

X GPI Asserted
[]GPIIn

InEut Statusn(O OK; 1ng Error State)

] i

Behaviours
Bindinas
All
Combine
Custom
Direct
Event
Logical

a) Texf Edit Widget and Behaviours and Bindings

Edit Direct Bind
Common Properties
Name: Direct Bind|

Source Behaviour: My Input State Stimulus Beh
Mode: Read/Write

Format 5tring:

Target: @® widget (O Behaviour

b) Direct Binding Settings

Fig. 7-19: Text Edit Widget Behaviours and Bindings

12 Click Close.
13 Click Save.

Orbit MapView
User Manual

14 Select the Lamp widget and add a Logical Binding and a Property Binding.
15 Edit Binding settings as shown in Figure 7-20 and Figure 7-21.

My_Logical-Binding_Eg.schx €3

Input stimuli: . Lamp widget
X GPI Asserted
[]GPIIn
C |
Input Status (0 OK; 100 Error State)
Cr T |

Behaviours

B To st [Utton

Logical Binding

Load Control Screen
Local Timer

Local Value

Log Field

MV-Flex Contro

Property Binding

Bindings
a) Lamp Widget and Behaviours and Bindings

Edit My Combine Error Messi
Common Properties

Name: My Combine Error Me

Logical Operator: OR ~

LHS Type LHS Behaviour LH5 Value Operator RHS Type RHS Behaviour RHS Value
Behaviour My GPI Stimulus Beh Value Equals Literal
Add
Behaviour My Input State Stimulus Beh Value Equals Literal

Delete
Target:

Literal O widget

Literal) (® Behaviour: My Combined Error Beh

b) Logical Binding Settings
Fig. 7-20: Text Edit Widget Behaviours and Bindings

Target a new Local Value Behaviour

205

Examples with Bindings
Example - Logical Binding and Simulated GPI or Alarm State

Edit Lamp Color Bind
Commaon Properties
Name: Lamp Color Bind

Source Behaviour: My Combined Error Beh

Property to bind: 'Lamp Color

Bind Rules: Operator Expression Result

Default

Move Down Move Up : Delete

Close

Fig. 7-21: Property Binding Settings

16 Click Close.
17 Click Save.

Exercise the Logical Binding

Exercising the screen exercises the Logical Binding used.
1 Select the Lamp widget and click the Test button.
The widget is exercised and the Lamp is illuminated green. See Figure 7-22a.

Exercise the Lamp widget by providing test stimuli:

2 Select the Check Box.
The Lamp illuminates red. See Figure 7-22b.

3 Deselect the Check Box.
The Lamp illuminates green.

4 Enter ‘100’ at the Text Edit widget.
The Lamp illuminates red. See Figure 7-22c.

Halt the exercising:
5 Click the Test button.

206

Orbit MapView
User Manual

Input stimuli:

X GPI Asserted
[]GPIIn

Input Status (0 OK; 100 Error State)

Behaviours

All
Alarm
Command Line

a) Green Lamp - No Error Status

Input stimuli:

X GPI Asserted
[JGPIIn

Behaviours

All
Alarm
nmand Line

ontrol Screen
ocal Timer
ocal Value

Input Status (0 OK; 100 Error State)

¢) Red Lamp - Input Status Erro

Lamp widget

Lamp widget

Input stimuli: Lamp widget

X GPI Asserted

GPI In

Input Status (0 OK; 100 Error State)

Behaviours

Fig. 7-22: Exercising Logical Binding with Lamp Widget:

b) GPI Asserted.
¢) Input Status Error Asserted.

207

Examples with Bindings
Example - Logical Binding and Simulated GPI or Alarm State

Controlling Border Color

The example of Example - Logical Binding and Simulated GPI or Alarm State, on page 201,
controls a on-screen Tally Lamp color. Alternatively, a rectangular border color may be
controlled, briefly described here using a rectangle shape widget.
From the example of Example - Logical Binding and Simulated GPI or Alarm State, on page 201:
1 Add a Rectangle shape widget.
2 Select the widget and display the ‘Behaviours and Bindings’ graphical editor.
3 Add three Property Bindings. (See Figure 7-23.)

My_Logical-Binding_Eg.schx €
Input stimuli:

X GPI Asserted
[CepPrIn

Input Status (0 OK; 100 Ertor State)

Behaviours
Bindinas

All
Combine

Fig. 7-23: Adding a Rectangle

4 Configure each Binding as shown in Figure 7-24.
Note: Each Binding is configured to use the same source Behaviour (‘My Combined Error
Beh’from Example - Logical Binding and Simulated GPI or Alarm State, on page 201.)

208

Orbit MapView
User Manual

Edit Border Color Bind

Common Properties

Name: Border Color Bind|

Source Behaviour: My Combined Error Beh

Property to bind: 'Border Color

Bind Rules: Operator
Equals #0000
Default #00ffoo

Move Down Move Up 1 Delete

a) Property Binding - Border Color

Edit Border Flash Bind
Common Properties
ET S Border Flash Bind|

Source Behaviour: My Combined Error Beh

Property to bind: |Border Flash

Bind Rules: Operator Expre

Equals

Default

Move Down Move Up A Delete

Edit Border Thickn

Common Properties

Name: Border Thickne nd|

Source Behaviour: My Combined Error Beh

Property to bind: |Border Thickne

Bind Rules: Operator Expre
Equals
Default

Move Down Mave Up 1 Delete

¢) Property Binding - Border Thickness
Fig. 7-24: Property Binding Configurations

Exercising the design is shown in Figure 7-25.

209

Examples with Bindings
Example - Logical Binding and Simulated GPI or Alarm State

My_Logical-Binding_Eg.schx €

My_Logical-Binding_Eg.schx €

Input stimuli: Lamp widget Input stimuli: Lamp widget

X GPI Asserted X GPI Asserted
CIGPIIn ClGpiIn
Input Status (0 OK; 100 Error State) Input Status (0 OK; 100 Error State)

o] 100 |

a) Green Border - No Video Error Status Asserted b) Red Border - Either GPI Asserted or Input Error Status

Fig. 7-25: Exercising:
a) Thin Green Border.
b) Flashing, Thick Red Border.

210

Orbit MapView
User Manual

Example - Event Binding and ‘Taking’ a Slider Value

Take Slider value upon a Button press

Slider widget

TAKE

Taken Slider Value= 30

This example uses:
- Widgets - Slider, Button, Label.
« Bindings - Event.
+ Behaviours - Local Value.

This example uses an Event Binding to take a snapshot of a value from a Slider widget and
pass it on for use in a MapView screen.

Build the Example

1 Open a screen schematic.

2 Add a Slider widget. This will be our source of data values.

3 Add a Button widget. This will have an Event Binding.

4 Add a Label widget. This will show the resulting slider value taken with a button click.
See Figure 7-26.

Slider widget
Button widget
Label widget

Take Slider value upon a Button prass

Slider widget

TAKE

Taken Slider Value= not taken

Fig. 7-26: Widgets Added

The following are carried out with the ‘Behaviours and Bindings' graphical editor:

5 Click on the Edit Behavours button, , . to open the ‘Behaviours and Bindings’
graphical editor. of

6 Select the Slider widget and add a Local Value Behaviour. See Figure 7-27.

A Local Value Behaviour and Direct Binding are added.

211

Examples with Bindings
Example - Event Binding and ‘Taking’ a Slider Value

MY_Event-Slider_Eg.schx (*) &

Take Slider value upon a Button press

Slider widgetg' E

TAKE

Taken Slider Value= not taken

Behaviours

Load Control Screen

Fig. 7-27: Slider Widget Behaviours and Bindings

7 Select the Label widget and set the Caption property to ‘not taken’
See Figure 7-28.

8 Add a Local Value Behaviour.

A Local Value Behaviour and Direct Binding are added.

7

Set Caption property to ‘not taken

MY_Event-Slider_Eg.schx (*) @

Take Slider value upon a Button press

279

394.00 x 42.00

Slider widget .
Width

TAKE Height
Aspect Ratio Custom

Taken Slider Value= gnot taken E I Default =

Lr

Behaviours

All

Alarm

Alarm Acknowledgeme
Alarm Mask

Label Value
Initial Value

Fig. 7-28: Label Widget Behaviours and Bindings

212

Orbit MapView
User Manual

9 Select the Button widget and set the Caption property to ‘'TAKE' See Figure 7-29.
10 Add an Event Binding. See Figure 7-29.

Set Caption property to ‘TAKE’

Properties

MY_Event-Slider Eg.schx (*) @
Dirr

Take Slider value upon a Button press

Slider widget —_— - 1500 %460

O O | Width

Ct LI - Aspect Ratio Custom

not taken = Default

Taken Slider Value=

Behaviours
-
Lower label
Upper Label
mmand Line Toggle

Display Details

Event Binding
Fig. 7-29: Button Widget Behaviours and Bindings

11 Edit the Event Binding settings (double-click on the Binding in the graphical editor) to:
+ handle a click widget event;
- target the Label value; and
« set the Label value to the Slider value.

See Figure 7-30.

Handle widget click event Target Behaviour

Edit Event

Commeon Properties

Name: Eve nﬂ

O condition

LHS: Label Value

- Operator: QO Trigger behaviour

O Handle behaviour value change RHS:
Behaviour = Slider Value

Close

Set to the Slider value
Fig. 7-30: Edit Event Binding Settings

12 Click Close.
13 Click Save.

213

Examples with Bindings
Example - Event Binding and ‘Taking’ a Slider Value

Exercise the Event Binding

Exercising the screen exercises the Event Binding used.
1 Select the Button widget and click the Test button.

2 Move the slider and then click on the TAKE button.
The label value will show the slider position value when the TAKE button is clicked.
(The slider values in this example are from 0 to 100.)

See Figure 7-31.

To halt the exercising:
3 Click the Test button.

MY_Event-Slider_Eg.schx €

Take Slider value upon a Button press

Slider widget

TAKE

Taken Slider Value= not taken

MY_Event-Slider_Eg.schx €

Take Slider value upon a Button press

s Slider widget =
Mask . I,\\,

All

TAKE

Taken Slider Value= not taken

Drag Slider Behaviours

il Take Slider value upon a Button press

Display

Slider widget

TAKE

Click TAKE Taken Slider Value= 30

Behaviours

Slider value taken

e Take Slider value upon a Button press

Slider widget

TAKE

ks
Taken Slider Value= 100

Fig. 7-31: Exercising Event Binding with Slider and Button

214

Orbit MapView
User Manual

Example - Button Click Increments a Value by One

Increment a Number:

Increment Number 1

This example increments a Behaviour value by one upon a button click and shows how to
avoid a non-stabilized loop.

This example uses:

Build the Example

Widgets - Button.
Bindings - Event, Math.
Behaviours - Local Value.

1 Create a new screen and open it in the schematic editor.
2 Add a Button widget and add a Label widget.
3 Set the button’s ‘Caption’ property to ‘Increment Number’

and open the ‘Behaviours and Bindings’ graphical editor.

4 Select the Button widget on the screen.

8

Add three Local Value Behaviours, one Math Binding and one Event Binding onto the
‘Behaviours and Bindings’ graphical editor.

Configure the Local Value Behaviours:

- Name ='My Number’; Initial Value = 0.

« Name = ‘Next Incremented Number'.

« Name =My Unity’; Initial Value = 1.
Configure the Math Binding to add one to ‘My Number’'and place the result in Local Value
‘Next Incremented Number' See Figure 7-32.

Edit My Increment Beh

Common Properties

Mame: My Increment Beh

Operation Target

LHS: My Number = Result: Mext Incremented Number

Operator: Add

RHS: My Unity

Fig. 7-32: Math Binding Properties

Configure the Event Binding to set the value of ‘My Number'to the value of ‘Next
Incremented Number’when the button is clicked. See Figure 7-33.

215

Examples with Bindings
Example - Button Click Increments a Value by One

Edit My Increment Event

Common Properties

Mame: My Increment Eve nt]

Source O condition Target

(® Handle widget event My Number
click - (O Trigger behaviour

(O Handle behaviour value change (® Set behaviour value

Behaviour = Mext Incremented Mumber

Fig. 7-33: Event Binding Properties

9 Configure the Label to show Local Value ‘My Number; using a Direct Binding.
10 Click Save.
11 Click Save Project.

The resulting ‘Behaviours and Bindings’ graphical editor for the Button widget is shown in
Figure 7-34.

Test icon

My_Event-ClearIncr_Egd.schx

Increment a Number:

-

Increment Number ** Tncrement me**

LT

Behaviours

Bindings

Fig. 7-34: Increment a Number Example

216

Orbit MapView
User Manual

Exercise the Example

1 Select the Button widget and click the Test icon.

In ‘Test’ mode, the Behaviours and Bindings associated with the Button widget are shown.

2 Exercise the design by clicking the button and seeing the number increment each time.
Behaviours and Bindings are annotated with their live values. See Figure 7-35.

3 To stop test mode, click the Test icon again.

My_Event-ClearIncr_Egi.schx

a) Initial screen. Increment a Number:

Increment Number 0

Behaviours

site
GSM Alarm

b) After first button click. G5 Mask
Increment a Number:

Increment Number 1

Behaviours My Number + 1
My Number =0
My Number =1

My Number + 1
c) After second button click.

Increment a Number:

Increment Number 2

Behaviours

Local Timer
Local Value

My Number =2

My Number + 1

Flex Control

Cal+ Command

Fig. 7-35: Exercising the ‘Increment a Number’ Example:
a) Initial Screen. b) After First Button Click. c¢) After Second Button Click.

217

Examples with Bindings
Example - Forming a Text String for a Command Line Behaviour

Example - Forming a Text String for a Command Line Behaviour

Exercise Command Line Behaviour

Run Cmd Line Beh

This example uses a Combine Binding to prepare a text string argument for a Command Line
Behaviour. The example assumes an existing source of ‘MY_LOG_HEADER’ log messages from
RollCall address 1000:E0:01.

This example uses:
« Widgets - Button.
+ Bindings - Event, Combine.
« Behaviours - Command Line, Log Field, Local Value.

A Log Field Behaviour monitors a Log Field from a RollCall address. The Log Field value and the
RollCall address are combined to form a text string which is passed to a Windows batch file
which is executed viaa Command Line Behaviour.

Build the Example

218

Screen Background
1 Create a new MapView screen.

2 Right-click on the screen background, select ‘Variables...'
and set variable ‘Address’to ‘1000:E0:01".

3 Add a Local Value Behaviour
and set its ‘Initial Value’ property to ‘{Address}’.

4 Add a Log Field Behaviour
and set its ‘RollCall address’ property to ‘{Address}
and its ‘Headers’ property to ‘MY_LOG_HEADER'.

5 Add a Combine Binding.
6 Double-click on the Binding to edit its properties.

In this example, the RollCall address and the Log Header value are combined and placed
into another Local Value. See Figure 7-36.

Orbit MapView
User Manual

RollCall address added

Edit Combine Bind

Common Properties

Mame: Combine Bind

Inputs: Behaviour Behaviour Value

Add

1 Local Value Addr Value
Remove

Log Field value added 2 Log Field Beh MY_LOG_HEADER

Up

Down

Format String Join Mode: (O separator @ Format String

Separator/Format: all address %1, Header MY_LOG_HEADER=

Local Value Behaviour Target: My_Combined_Text

target to hold
combined text string

Close

Fig. 7-36: Combine Binding Property Settings

Note the use of double-quotes (“ “) in the format string.
7 Click Close.

The screen background'’s Behaviours and Binding are shown in Figure 7-37.

RollCall address

Log Field value
Local Value Behaviour holds combined text string

Fig. 7-37: Behaviours and Binding (Screen Background)

Command File for a Command Line Behaviour to Run
1 Create a batch file (.bat) on the client computer.

For example, create batch file My_Cmd_File.bat (see Figure 7-38) at location C:\temp\

and enter the following via a text editor:
echo off
cls
echo []
echo [] Example Orbit Command Line Behaviour script:
echo []

219

Examples with Bindings
Example - Forming a Text String for a Command Line Behaviour

echo [] Argument passed to script file from Orbit MapView is:

echo []

echo [] %
echo (]

pause

rem End of file.

= |]|
@,\;/v| . v Computer » Local Disk (C:) » temp v|$¢|| Search temp p'
Organize « Open Share with « Print Mew folder o O .@.
- echo off
1 il [[2]My_Cmd_File cls
. Program Files acho []
i echo [] Example orbit Command Line Behawviour script:
J Program Files echo []
| ProgramData echo [] argument passed to script file from orbit mapview is:
echo
. SAM_Fusion echo H %1
- = echo []
. SAM_Orbit |_| pause
J SmartSVMN rem End of file.
& temp -] 1 | b
My_Cmd_File Date modified: 29/10/2018 10:53 Date created: 29/10/2018 08:43
Windows Batch File Size: 211 bytes

Fig. 7-38: Batch File

Button Widget
On the MapView screen in Orbit:

1 Add a Button widget, an Event Binding and a Command Line Behaviour. See Figure 7-39.

,_|

Run Cmd Line Beh

LT

Behavio..

Bindings

Fig. 7-39: Button Widget, Event Binding and Command Line Behaviour

2 Set the Button widget’s ‘Caption’ property to describe the button’s function, for example,

‘Run Cmd Line Beh'.

3 Set the Event Binding to run the Command Line Behaviour when the button is clicked
and to pass the combined text string to it as an argument. See Figure 7-40.

220

Orbit MapView
User Manual

Target set to the Command Line Behaviour

Argument to pass is the combined text string

Edit Event

Common Properties

MName: Event

Source O condition Target

(® Handle widget event Command Line Beh

click - (® Trigger behaviour

O Handle behaviour value change data
Behaviour * My_Combined_Text

(O set behaviour value

Close

Fig. 7-40: Event Binding Settings

4 Set the ‘Command’ property of the Command Line Behaviour to be the path to the batch
file. (C:\temp\My_Cmd_File.bat) See Figure 7-41.

5 Click Close.
6 Click Save.
7 Click Save Project.

Path to the batch file

Edit Command Line Beh

Property
Name
Command C:\temp\My_Cmd_File.bat

s Set ‘Run Hidden’ property to ‘False,
Result Type Detached to be able to see the command
Run Hidden False . . e

prompt window when it is run.

Close

Fig. 7-41: Command Line Behaviour Settings

When the Command Line Behaviour is executed, the batch file will be run with the combined
text string as an argument. The batch file will open a command prompt window, and print out
text which will include the combined text string.

Note: Fixed arguments can be passed to the Command Line Behaviour
with the ‘Arguments’ property.

However, dynamic arguments, such as in this example, are passed to the
Behaviour where it is invoked.

(In this example, an Event Binding is used to invoke the Command Line
Behaviour and pass a dynamic argument.)

221

Examples with Bindings
Example - Forming a Text String for a Command Line Behaviour

Adding some Debug

Itis useful to be able to see some of the interim values while getting any example to run
correctly. Figure 7-42 shows some debug labels added to the screen.

Label caption = #{Address},MY_LOG_HEADER#

Label caption = {Address} (See for #Hash Field# Syntax, on page 164, for the hash
fields # #.)

Exercise Combine Binding

Debug:
1000:E0:01 #1000:E0:01,MY_LOG_HEADER#
-
Combined text daLabel E
() |

Exercise Command Line Behaviour

Label caption'set with Run Cmd Line Beh
a Direct Binding

Behaviours

Fi. 7-42: Labels used for Debug

When all debug is added, then save the screen and save the project.

222

Orbit MapView
User Manual

Exercise the Example

1 Click the Run Mode button in the main menu.

The initial screen is shown, see Figure 7-43.

RollCall address
MY_LOG_HEADER value

Combined text string

(]

Project

B My_C&M_Combine-Binding =ANCE X

Fle Edit Project View Tools Window RolCal iContrdl Controland Monitoring Help

My_Binding-Ef

Exercise Combine Binding

Debug:
1000:E0:01 Warning High Temperature

Combined text = "RollCall address 1000:E0:01, Header MY_LOG_HEADER= Warning High Temperature."

Exercise Command Line Behaviour

Run Cmd Line Beh

Logged in: admin

B Details 1000:0:01 - 1000:£0:01 (2 [

Sort by Status ~ Fiter: (@ Header (O value

Header Value
" LOG_HEADER arning High Temperature (1)

E 50

Fig. 7-43: Initial Screen when Run

2 Click the Button widget.

The command file is executed in a command line window. See Figure 7-44.

223

Examples with Bindings
Example - Forming a Text String for a Command Line Behaviour

B My_C&M _Combine-Binding
File Edit Project View Tools Wi v RoliCal jControl Controland Monitoring Help

Scale (87%) ~

©

Project X My_Binding-Eg.schx

Combine-Binding
components Exercise Combine Binding

Debug:
1000:E0:01 Warning High Temperature

Exercise Command Line Behaviour

Run Cmd Line Beh

/

Click

Network View

g

Combined text = "RollCall address 1000:E0:01, Header MY_LOG_HEADER= Warning High Temperature."

Logged in: admin

e

Combined text string printed

(=] 5

%

Fig. 7-44: Command Line Behaviour Executes Command File

3 In the command window, press any key.
The window closes.

4 To halt the exercising,
click the Design Mode button in the main menu.

Tools Window RollCall jControl Control and Monito

Design Mode

224

Orbit MapView
User Manual

Binding Execution Order

Edit binding order

Bindings Controlling a Behaviour Value
A Behaviour value may be connected to more than one Binding. In this case, the Behaviour
value will be from the last Binding to have executed.

For example, an external device which is being controlled from a MapView screen and also
from some other party.

The value of a Local Value Behaviour on the MapView screen may then depend on:
« input from a user via a Text Edit widget on a MapView screen; and
+ avalue reported by an external device.

The value of the Local Value Behaviour will come from the last Binding to have been executed
- either a change made by the user, or a value reported by the external device. This is the
required functionality.

Determining Binding Execution Order

In some cases, Bindings controlling a Behaviour value may be triggered by the same event and
a resulting value will depend on the order in which the Bindings are executed by Orbit. The
Binding execution order can be set in Orbit.

For example, some state value is tested to determine if it is ‘OK’, or a ‘Warning’, or a ‘Failure’
condition with three Bindings. See Figure 7-45.

225

Examples with Bindings
Binding Execution Order

226

Three Bindings test a state value

My_Two-Events.schx

Event Ordering

Enter alarm value (0 - to 100 indusive):

M

On button click: Show Alarm Condition E *¥Alarm Condition**
Set result Value to “OK" o
\

On button click:
If alarm value >= 49, then " Behaviours
set result Value to “WARNING” i

Ev nTE
Logical
. Mapped
On button click: r;ath

If alarm value >= 99, then RolCall v3
set result Value to “FAILURE" e

Fig. 7-45: Binding Order Example

The three Event Bindings used set the ‘Result Value’ to different values (OK, Warning or Failure).
The resulting value will be determined by the last Binding to be executed.

In our example here, we want a ‘Failure’ to take precedence, followed by a ‘Warning’ The Event
Binding order we want is:

+ 1:"Event set OK”; then

+ 2:"Event set WARNING”; and lastly

+ 3:"Event set FAILURE"

To set the Event Binding order of execution:
1 Ensure you are in ‘Design Mode'in Orbit.

2 Select the Button widget on the screen
and show the ‘Behaviour and Binding’ graphical editor.

3 Right-click in the ‘Behaviour and Binding’ graphical editor

and select ‘Edit binding order’.
The Binding Order dialog is shown. See Figure 7-46.

Orbit MapView
User Manual

My_Two-Events.schx

Event Ordering

Enter alarm value (0 - to 100 indusive): Result:
[1
Show Alarm Condition E *¥Alarm Condition**
L]

Behaviours
Bindinas

Al
Combine
Custom
Direct
Event
Logical
Mapped
h

Edit binding order

Right-click and select ‘Edit Binding Order’

1

H Binding Order e

Drag and drop to re-order the bindings:
Event set OK

Fig. 7-46: Edit Binding Order Dialog

The order of execution of the Bindings is determined by the Binding Order dialog.
4 Drag and drop the listed items to re-order the Binding Order list as required.

(For this example, the order shown in Figure 7-46 is required.
The ‘Event set FAILURE' Binding must the last to be executed and will overwrite the Result
Value if the alarm value indicates a failure.)

Note: This example illustrates a point about Binding order and uses three
Event Bindings.

The example itself would normally be done with a Mapped Binding to
convert a value into one of the three states ‘OK;, ‘Warning’ or ‘Failure’.

227

Examples with Bindings
Binding Execution Order

Exercising the Example

Figure 7-47 shows the example being exercised for different entered alarm values.

H Binding Order —

Drag and drop to re-order the bindings:

Event set OK . i i
e e X e Enter alarm value in text edit box,

Event set FAILURE press return.

« Click button to see Result

Event Ordering

Enter alarm walue (0 - to 100vindusive): Result:
Show Alarm Condition QK

a) Alarm value = 1, OK

Event Ordering

Enter alarm value (0 - to 100 indusive): Result:

Show Alarm Condition WARNING
b) Alarm value = 50, WARNING

Event Ordering

Enter alarm wvalue (0 - to 100 indusive): Result:

Show Alarm Condition FAILURE
c) Alarm value = 99, FAILURE

Fig. 7-47: Exercising the Event Binding Order Example

228

8 Examples with Behaviours

Summary

Examples with Behaviours

Example - Read a Device’s Log Field page 230
Log Field SOUrce Data.vuueui ettt eineans page 230
Read A LOGFieldottt et ineans page 231
Using the #Hash Field# Syntaxooeuuniie et ieiaeanennas page 232

Example - Write to a Log Field.............ocevveeneeune. page 234
Write to aLog Fieldooueeu e e e e e e page 234

Example - Linking from One Screen to Another page 237
Overall Screen Hierarchy and Home Screen.c.ooeuiveiieiiiineiinnennnnns page 237
Link Behaviour with Button Widget Examplecccoiiiiiiiiiiinnnnnn.. page 237
Drag-Drop LInk Method.t ettt page 242

Example - Screen Link States and Screen Re-Use with Variable Files page 243
INErOAUCEION . ..o e ettt et et e et et it ae e e page 243
Prelimingrieseeuuee ettt et it e e e et page 244
Create the Project, a Top Level Screen and Set the Home Screen.................... page 245
Build a Banner Componentouuueneunen et ee i ei it eiaeiaraanaenas page 245
Build a Device Information Screen (Low-Level)cccoveeiiiiiiiiniinnna.n. page 247
Build Two Rack Screens (Mid-level)coeeuiiiiieiiiiiiiiiiiniinnan. page 247
BUild the TOp LeVEI SCreeN. ... ettt ettt et eans page 252
Restart Orbit MapView Serviceeuue ettt it et ieeieanns page 255
Quick Check of Orbit MapView Project.ueueeeiiiiiiiieiieiiianinnnnnn. page 257
Exercise the EXAMPIe. ..ottt ettt it page 258
Renaming Virtual Nodes in Network Viewccouieiiiiiiieiiniiannnnnnn. page 263

Example - ‘Control with Take’ for a Manual HCO Switch-Over page 264
Lo (3 el 1o o T page 264
Prelimingrieseeuue ettt et et et et et e page 264
Configure RAAIO BULTONSo ettt ettt e e e e et ee e ie e eiaaes page 269
Configure Pre-select for TAKEBULLONvoeee et it iie e iie i page 270
Display the TAKE Timeout onthe Button Faceccovveiiiiiineinnen.. page 278

This chapter presents some MapView-specific examples showing the use of Behaviours with
Bindings.

229

Examples with Behaviours
Example - Read a Device’s Log Field

Example - Read a Device’s Log Field

Device

~—

My_Log-Field_Eg_1.schx €

Behaviour.

All =
Alarm

Alarm Acknowledge ‘ Details 0000:E1:00 - 0000:E1:00

Sorthy ~ Filter: @ Header O Value Clear

Header Value

plus Using the #Hash Field# Syntax

This example reads and displays a Log Field header with Orbit MapView from a RollCall-
enabled device with RollCall address ‘0000:E1:00'. It assumes a Log Sever and Orbit Services are
running and monitoring devices in a system.

This example uses:
« Widgets - none.
+ Bindings - none.
+ Behaviours - Log Field.

- the Hash Field syntax (# #)
(see Using the #Hash Field# Syntax, on page 232 below).

Log Field Source Data

230

In the Orbit Network View pane:

1 Right-click on a RollCall-enabled device (our example uses RollCall address 0000:E1:00)
and select ‘Details’.

2 A Details window is shown which shows the live log messages (Header-Value) being issued
by the RollCall-enabled device.

Orbit MapView
User Manual

RollCall address Log Field value
(B Detaits 0000:£1:00 - 0000:£1:00 =)
Sort by Status = Filter: '@ “gader Value Clear
Header Value

LFig. 8-1: Log Field Behaviour

Read a Log Field
1 Open a new Orbit MapView screen and show the ‘Behaviour and Bindings’ graphical editor.
2 Add aLog Field Behaviour.
3 Edit the Behaviour properties to be:

+ RollCall Address: 0000:E1:00 (or any RollCall address of a device issuing log
messages.)
+ Headers: UNIT_STATUS (l.e. any Log Field header name being issued by

the RollCall address.)
+ Write Mode: Read Only
See Figure 8-2.

Edit My Log Field Beh

Name My Log Field Beh
RollCall Address 0000:E1:00
Headers UNIT_STATUS

Write Mode Read Only

Fig. 8-2: Log Field Behaviour Settings

4 Click Close.
5 Click Save to save the screen schematic.

Exercise Log Field Reading
1 Click the Test button () to exercise the screen.

The Log Field Behaviour value reflects the UNIT_STATUS log header value from the RollCall
address. See Figure 8-3.

231

Examples with Behaviours
Example - Read a Device’s Log Field

My_Log-Field_Eg_1.schx €

All -
Alarm

Alarm Acknowledge
Alarm

The device's UNIT_STATUS Log Field
value is available to the Orbit
MapView screen via the
Log Field Behaviour.

Audio Ley Sortby ~ Filter: (@ Header (O Value

Audio Loudness
Audio Ph Header

2 Click the Test button again to stop exercising the screen.

Using the #Hash Field# Syntax

In Read a Log Field, on page 231, a Log Field Behaviour is explicitly used when a Log Field
value is required on a MapView screen. For simple cases where property values are simply set

to Log Field values, a ‘hash field’ syntax short-hand can be used.
(Refer to #Hash Field# Syntax, on page 164.)

A hash field, #LOG_FIELD#, in a property value string invokes a Log Field Behaviour ‘behind-

the-scenes’in Orbit.

To use the Hash Field Syntax:
1 Add a Label to the screen.

2 Set the ‘Caption’ property to #0000:E1:00,UNIT_STATUS# , see Figure 8-4.

232

Orbit MapView
User Manual

Hash field syntax, # #, used in caption property value

My_Log-Field_Eg_1.schx & Properties

Label widget Dime

L1 -
%cmm:a :00,UNIT_STATUS# § Width
- Height

Default

All

Alarm
Alarm Acknc
Alarm k

1:00,UNIT_STATUS#
WILIT CIRE vV TTOE

F;'g. 8—4 Hash Field Syntax
3 Click Save.

Exercise Hash Field
1 Click the ‘Test Behaviour/Bindings'icon (.) to exercise the screen.

A device’s UNIT_STATUS header value is shown
on a label on-screen.

Status: OK

‘ Details 0000:E1:00 - 0000:E1:00

Sort by - Filter: (®) Header {O) Value

Header Value

ad Control Screen
Local Timer
Local Value
Lock

Fig. 8-5: Log Field Value Shown on Label and by Log Field Behaviour

2 Click the Test button again to stop exercising the screen.

233

Examples with Behaviours
Example - Write to a Log Field

Example - Write to a Log Field

X My_Log-Field Eg_1.schx @
nt-Bindings
|_Example-HCO
|_Log-Field-Eg

babx File.globalx
eld_Eg_1_glob...

My-Log-Field-Eg.schx Behav...
Bindin..
My-Log-Field-Eq_Text-Edit.schx

My-Stimulus.schx
B Details 0000:EL:00 - 0900:E1:00
Sortby ~ Filter: @ Header QO value i

Network View
Header Value

10 0000:| 10
0000:FF:00

Write

—p! Device

This example writes to a Log Field header with Orbit MapView from a RollCall-enabled device
with RollCall address ‘0000:E1:00'.

This example uses:
« Widgets - Label, Text Edit.
+ Bindings - Direct.
+ Behaviours - Local Value.

Log Field header values may also be written to from an Orbit MapView screen. Here, the
example has a Text Edit widget added and connected up to a Log Field header value
(USER_FIELD).

Write to a Log Field

The steps below follow on from Example - Read a Device's Log Field, on page 230 above:
1 Add a Text Edit widget to the MapView screen.

Note: A Text Edit widget can be configured to require the user to press
Enter (i.e. the Return key) or not - by setting the ‘Requires Return Key’
property to true.)

2 Select the Text Edit widget and open the ‘Behaviour and Bindings' graphical editor.
3 Add a Log Field Behaviour and a Direct Binding.
4 Configure the Log Field Behaviour:

« Name: ‘Log Field Write Beh'.

+ RollCall Address: ‘0000:E1:00'".

+ Headers: ‘"USER_FIELD'.

+ Write Mode: ‘Write Only’.

234

Orbit MapView
User Manual

5 Configure the Direct Binding to use the ‘Log Field Write Beh’ Behaviour as source its

Behaviour.
Text Edit widget
My_Log-Field_Eg_1.schx &
#0000:E1:00, UNIT_STATUS# Text Edit widget value
isboundtoa

Log Field Behaviour
which writes the value to
the USER_FIELD Log Field
for the given RollCall

CHT
A

Behav...
Bindin..
All
Combine
Custom

Direct
Event

Fig. 8-6: Text Edit Widget and Local Value Behaviour

6 Click Close.
7 Click Save.

Exercise Writing to Log Field
1 Click the Test button (.) to exercise the screen.

2 Enter text into the Text Edit widget and press Enter.

The MapView screen writes the text string to the USER_FIELD Log Field of the device at
RollCall address 0000:E1:00 via the Log Field Behaviour

To see this, in the Network View pane:

3 Right-click on the device with RollCall address 0000:E1:00 and select ‘Details’ to show a
Details window.

4 Figure 8-7 shows the entered text string.

235

Examples with Behaviours
Example - Write to a Log Field

User-entered text string in Log Field Behaviour

My_ _Event-Bindin
My_C&M_Example-HCO
My 1_Log-Field-Eg
B Globalx
© My Globalx File.globalx
My_Log-Field_Eg_1_glob...
components

[My user log message.” |

Behav...

Bindin..

‘ Details 0000:E1:00 - 0000:E1:00

Logical

Mapped Filter: @ Header O Value
Math

Property

RollCall v3

Right-click, select ‘Details

Value

onitoring Service
10:EL:00
0000:E1:00 0000:E1:00
MapView Servic :FF:00

Text string in ‘Details’ window as a Log Field header value
Fig. 8-7: User-Entered Value Written to a Log Field Value

5 Click the Test Button again to stop exercising the screen.

236

Orbit MapView
User Manual

Example - Linking from One Screen to Another

My_Link-Eg-2_HighLevel.schx &

High-level Schematic

Note: the top-level screen must be set

Button to be the Home Screen.

My_Link-Eg-2_LowLevel.schx €

Low-level Schematic

Frame 1
Frame 2
Frame 3

Frame 4

A link between two screens can be created by adding a Link Behaviour to a screen along with a
Button widget. This allows the user to navigate between screens when the screen is running.
This example uses:

+ Widgets - Button.

+ Bindings - Event.

+ Behaviours - Link.

Overall Screen Hierarchy and Home Screen

In this example, two isolated screens will be created and used. However, in practice, screens
will be part of some overall screen hierarchy and, in this case, the top-level screen must be set
as the home screen. This is done so that Orbit Services know where the top level of the screen
hierarchy is. The services can then traverse the hierarchy from that point.
To set a top-level screen as the home screen:

« Open the top-level screen.

+ Click Project > Set xxx as Home in the main menu.

Link Behaviour with Button Widget Example

1 Create two blank screens,
one which shall be our low-level screen and one our high-level screen.
(‘My_Link-Eg-2_HighLevel’and ‘My_Link-Eg-2_LowLevel’).

2 Open the high level screen and add a Button widget.

3 Click Project > Set xxx as Home in the main menu.
This sets the higher-level screen to be the home screen for this 2-screen example.

4 Select the Button widget and open the ‘Behaviour and Bindings’ graphic editor by clicking
the Edit Behaviours button.

5 Add a Link Behaviour.

237

Examples with Behaviours
Example - Linking from One Screen to Another

Automatically, an Event Binding is also added connecting the Link Behaviour to the
clicking of the button. (For example, see Figure 8-8.)

My_Link-Eg-2_HighLevel.schx &

High-level Schematic

Behaviours

Link Behaviour

G ask

GSM Text

Link

Load Control Screen

Fig. 8-8: High-level Screen

6 Edit the Link Behaviour properties
and set the Path property value to be the path to the low-level screen. See Figure 8-9.

And Figure 8-10 shows the final Link Behaviour properties.

238

Orbit MapView
User Manual

Edit Link
Name Link
Single Click v True
Path /schematics/My_Link-Eg-2_LowLevel.schx
Link Mode Schematic Link

Target Application Window

Report Link Status v True
Variable File Path

1) Click icon to show the
‘Select File' dialog.

2) Browse to required low-level screen.

3) Select screen.

4) Click OK.

B My _Link-Eg_1.¢
B My _Link
B My_Link-Eg-
My_Link:
B My_Link g
B My_Link-Eg-2_LowLev

l themes

Fig. 8-9: Setting Path Property

Path set to the low-level screen in the Orbit MapView project.

My_Link-Eg-2_HighLevel.schx &

High-level Schematic

Edit Link

Name

(V]
Target Application Window
Report Link Status v True
Variable File Path

Fig. 8-10: Link Behaviour Properties

239

Examples with Behaviours
Example - Linking from One Screen to Another

7 Click Close.
8 Click Save to save the screen file.
9 Click Save Project.

Exercise the Link to a Screen

The Link example screen can now be exercised:
1 Open the high-level screen.

2 To start exercising the screen,
click the Run Mode icon in the main tool bar ().

Orbit enters ‘Run Mode'. See Figure 8-11.

3 To exercise the Link functionality,
click the button on the Orbit MapView screen to open the low-level screen.
See Figure 8-11.

4 Click the Back icon (.) in the main tool bar to go back to the high-level screen.
To stop the exercising the screen:
5 Click the ‘Run Mode'icon again.

Note: The . icon is annotated ‘Design Mode' when in ‘Run Mode',

And vice-versa.

240

Orbit MapView

User Manual
1) Click Run Mode icon
to exercise the screen.
r‘ My_C&M_Link-Beh = |

(]

Project

B schematics

|

Network View

e

File Edit Project View Tools Window

aflCall Control and Monitoring iControl Help

Scale (104% ~

My_Link-Eg-2_HighLevel.schx €

High-level Schematic

Button

Logged in: admin

2) Click Button widget
to show the low-level screen.

3) Click Back icon
to go back to the high-level screen.

My_Link-Eg-2_LowlLevel.schx & .

Low-level Schematic

Click

[

Frame 1

Frame 2

Frame 3

Frame 4

Fig. 8-11: Exercising the Link Behaviour

241

Examples with Behaviours
Example - Linking from One Screen to Another

Drag-Drop Link Method

There is a quick way to add a Link Behaviour with a Button widget to link between two
screens. A button can be created on a (higher-level) screen by drag-dropping a (lower-level)
screen from the Project View in Orbit onto the (higher-level) screen open in a schematic editor.
A Link Behaviour is automatically created and configured with a Button widget.

1 Drag-drop (lower-level) screen (see Figure 8-12) from the Project View pane (1) onto an
open screen schematic.

This creates:
+ a Button widget (2) with its ‘Caption’ and ‘Path’ properties already set (3);
+ aLink Behaviour (4) bound to the Button with an Event Binding (5)

g) @ a)

My_Link-Eg-1-DragDrop.schx (*) @ Properti

My_Link-Eg-1.2.5chx

Height
Aspect Ratio

My_Link-Eg-1-Dr.

-

Link-Eg-1

B

ower label
My_Link-Eg-1.2.schx A P v ower [al
i Upper Label

g-2_HighLev
k-Eg-2_LowlLev:

-schx /My_Link-Eg-1.2.schx
Mk Mode SChematic Link
raet e —

My_Link-Eg_Image.schx Target Application Windows
v True
Network View

5) (4)
Fig. 8-12: Drag-Dropped Lower-Level Screen

242

Orbit MapView
User Manual

Example - Screen Link States and Screen Re-Use with Variable Files

This example demonstrates Link States of an Orbit MapView project.
This example uses:

» Widgets - Label, Button, Image Button, Digital Clock.

«+ Bindings - Direct.

- Behaviours - Link.

And Variable Files are introduced, and Orbit Services are used.

Introduction
The example uses the Orbit Services (Orbit MapView service) to update Link State for a simple
screen hierarchy (shown in Figure 8-13). Additionally, a Variable File is used to enable one
screen to be re-used.
S Link State Example 14:19:48 09:19:48
‘ ’ p Time UK Time NY
Banner
Top level screen
7" Link State Example 09:52:11 04:52:11
‘ ’ Time UK Time NY
> Set as home
Top Level
Rack A Rack B
Rack A screen Rack B screen
Link State Example 09:53:15 04:53:15 Link State Example 09:54:44 04:54:44
[=Je» c S T e S
Rack A Rack B
mli:lOD SWITCHER ONE
Top Level
Rack A Rack B

Screen hierarchy

T T]

Device Device Device Device Device Device Device Device

—— W ¥

Device Information
Device screen

Note: The same device
information screen is re-used
for each device.

Fig. 8-13: Screen Hierarchical Tree Structure (Example Simple Orbit MapView Project)

243

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

Preliminaries

Assumptions:

« The top-level screen is set as the ‘Home’ screen’ (‘Project > Set xxx as Home'in the main
menu.)

« Orbit MapView service is running on a server,
with RollCall address 0000:FD:00, domain 100.

« Orbit Monitoring service is running on a server,
with RollCall address 0000:FF:00, domain 100.

See Figure 8-14.
And:
« Orbit MapView set to domain 100.
« Device RollCall addresses used:
+ Rack A: 1000:A0:01 to 1000:A0:04.
+ Rack B: 1000:B0:01 to 1000:B0:04.
See Figure 8-15.

‘ Details 0000:FD:00 - MapView Service
Filter: @ Header O Value fil..

Value

UBLISHED

&M _Link-Beh
Mv Examble

. . Network View
MapView service at

RollCall address
0000:FD:00

@» MapView Service 0000:FD:00
Monitoring Service 0000:FF:00

Monitoring service at
RollCall address
0000:FF:00

& UFTIME

Fig. 8-14: Network View Showing Orbit MapView Service and Orbit Monitoring Service Running

244

Orbit MapView
User Manual

B Details 1000:A0:03 - 1000:40:03 7l =

Sortby - Filter: @ Header (O Value Clear

Metwork View

Header Value

@ TEMP_1_CELSIUS

S EEEEARight-click and select ‘Details
RollCall
Virtual Node 0000:01:00
7

Fig. 8-15: Some Devices Showing in Orbit Network View

Create the Project, a Top Level Screen and Set the Home Screen
1 Create a new control and monitoring Orbit project (C&M Project).
2 Create a new screen and leave it empty, for now. (Top.schx)

3 In the main menu,
click ‘Project > Set xxx as Home' to set this screen to be the ‘home’screen.

4 Click Save.
5 Click Save Project.

This is a (blank) top-level screen; it will be completed in a later sub-section below.

Build a Banner Component

Buttons:

Home, Back, Forward Label Digital Clock widgets

Link State Example 14:19:48 09:19:48

Home ‘ » Time UK Time NY

Fig. 8-16: Banner

To build the banner component:
1 Create a new component. (Banner.cptx)
+ Set the banner height and width in the Properties window.
+ Set background color.
2 Add a Label widget:
« Static text, simply the title of our example, ‘Link State Example’.
3 Add two Digital Clock widgets:
. Configure these to show the time required.

245

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

4 Add three buttons comprising a Button widget and two Image Button widgets:
+ 'Home’ button - Button widget.
« Set border width to 5.
» Set caption to ‘Home"
- Set Report Link Status to ‘False’ (Omits button from ‘Link State’ processing.)
« Add a Link Behaviour:
- set Behaviour Link Mode property to ‘schematic link’; and
- set Path property to point at the top-level screen.
+ ‘Back’ button - Image Button widget.
« Set caption to ‘Back’.
« Set Normal Image path to a ‘left-arrow’image,

+ Add a Link Behaviour and
set Behaviour Link Mode property to ‘back link’

« 'Forward’ button - Image Button widget.
+ Set caption to ‘Forward:
« Set Normal Image path to a ‘right-arrow’image,

+ Add a Link Behaviour and
set Behaviour Link Mode property to ‘forward link’
5 Click Save.

246

Orbit MapView
User Manual

Build a Device Information Screen (Low-Level)

1 Create a new screen (Dev-Info.schx) and enter Design Mode in Orbit.
2 Right-click on the screen background and select ‘Variables....

3 Add screen variables as shown in Figure 8-17a.

4 Add labels as shown in Figure 8-17b.

5 Click Save.

{=} Variables | 7| = |

Filter: New(N) Delete

Apply

a) Screen Variables

Static label text annotation

Label caption = {My_Name}
WASE = | abel caption = {My_Address}

b) Device Information Screen

Label caption= <{My_Address},LOG_HEADER_NAME>
Fig. 8-17: Device Information Screen

Build Two Rack Screens (Mid-level)

Rack A Screen
1 Create a new screen and open it in Design Mode in Orbit.
2 Add the ‘Banner’ component (built earlier) along the top.
3 Right-click on the screen background and select ‘Variables....
4 Enter screen variables as shown in Figure 8-18a.
5 Click OK.

247

Examples with Behaviours

Example - Screen Link States and Screen Re-Use with Variable Files

248

{~} Variables
Name
Address

My-Addr_Dev-

My-Dev-
My-Dev-2
My-Dev-3

My-Dev-4

Filter:

My-Addr_Dev-2

My-Addr_Dev-3

My-Addr_Dev-4

Type Value

Address
Address
Address

Address 000:A0:03 Define RollCall Addresses of devices in Rack

Address 1000:A0:04

String LSl efine names of devices in Rack
String Multiviewer 2
String Video Proc

String Prod Switcher

New New(N) Delete

oK Cancel Apply

a) Rack A screen variables

[} Variables
Name
Address
My-Addr_Dev-1
My-Addr_Dev-2
My-Addr_Dev-3
My-Addr_Dev-4
My-Dev-1
My-Dev-2
My-Dev-3

My-Dev-4

Filter:

Type Value

Address

Address

Address

Address

Address

String

String

String Switcher

String Spare

New New(N) Delete

0K Cancel Apply

b) Rack B screen variables

Fig. 8-18: Screen Variables:
a) Rack A.
b) Rack B.

Note: The screen variables defined here provide a default RollCall address
and name of each device in the equipment rack covered by this screen.

Figure 8-19.

6 Add four Button widgets.

For each Button widget:
7 Set the Button’s Caption property to be the screen variable for the device name. See

Orbit MapView
User Manual

8 Set the Button’s Lower label property to be the screen variable for the device RollCall
address. See Figure 8-19.

Rack-A.schx €

Link State Example 12:23:37 07:23:37

(267, 196)
Home Time UK Time WY - .
A 204

196

Rack A Width
Height
& Aspect Ratio Custom
gm“‘ Multiviewer 1 E Multiviewer
; Default *

Multiviewer 2
W00 o
0.00

Video Proc

Link A1

v True
[schematics/Dev-Info.schx
Link Mode Schematic Link

Fig. 8-19: Button Configuration

9 Add a Link Behaviour and configure as shown in Figure 8-20a:
- Configure Path to point at the device information screen.

+ Set Report Link Status to ‘True!
(The link state of the button will contribute to the overall state of the screen.)

- Configure Variable File Path to point at a text file listing the screen variable values to
use in the target screen (via this Link Behaviour).

Each Variable File used must be a text file containing the RollCall address and name of
a device in the rack. (See Figure 8-20b for an example variable file.)

10 Repeat for other Button widgets.

249

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

Path property points to (lower-level) device information screen

Edit Link Al

Name Link A1
Single Click

Path e e LS T Report Link Status set to

Link Mode Schema
Target Application Window
Report Link Status v True

le File P; [resources,

Close

. .) Variable File Path property points to a text file
a) Link Behaviour properties. listing variables to use.

Variable File variable values shown grayed out.

Variable File here sets

schematic variables
My_Address={My-Addr_Dev-1} (My_Address and

My_Name={My-Dev-1
Y- ty ’ \My_Name) to values.

This examples sets:

+ My_Address to the
value of variable
‘My-Addr_Dev-1’; and

+ My_Name to the value
of variable
‘My-Dev-1-.

Project Dev-Al.txt €

bt

b) Example Variable File

Fig. 8-20: Link Behaviour Configuration:
a) Properties.
b) Example Variable File.

11 Click Save.

This has created a screen for one device rack, Rack A.

Rack B Screen

To create the second rack (Rack B) screen:
1 Create a new screen similar to Rack A, and using variables in Figure 8-18b.
2 Click Save.

This has created two rack screens, see Figure 8-21.

250

Orbit MapView
User Manual

Rack-A.schx € Rack-B.schx Top.schx

Link State Example 12:33:57 07:33:57

Home ‘ » Time UK Time NY

Rack A

| Multiviewer 1
1000:A0:01

I Multiviewer 2
1000:AQ:02

Video Proc

1000:A0:03

I Prod Switcher
00:A0: D4

Rack-A.schx Rack-B.schx €@ Top.schx

Link State Example 12:34:29 07:34:29

— ‘ » Time UK Time NY

Rack B

I Audio Proc
1000 Bl 01

Stds Conv

| Switcher

1000:B0:03

I Spare
1000 B 04

Fig. 8-21: Rack A and Rack B Screens - Showing Device Names from the Respective Rack Screens

251

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

Build the Top Level Screen

1 Open the top-level screen (created earlier) in Design Mode.
2 Add the ‘Banner’component (built earlier) along the top.

3 Add two Button widgets.
One button will be configured to link to the Rack A screen, the other to the Rack B screen.

Screen Variables for Rack A Over-ridden at Link Behaviour

For Rack A’s Button widget:
1 Add a Link Behaviour and configure:
« Path property to point at to rack screen A.
+ Report Link Status set to ‘True'.

The screen variables as shown come from the Rack A screen itself. These Link Behaviour
settings may be edited (and over-ridden) here. See Figure 8-22.

2 Click Close.

Banner
Link State Example 10:59:47 05:59:47
Home ‘ * Time UK Time NY

Button Widgets§ Top Level

D311

e

Ol RackA [Rack B

i

Edit Link

Name Link

Single Click v True

Path fschematics/Rack-A.schx
Link Mode Screen Link

Target Application Window
Report Link Status v True

Variable File Path

c iables

Screen variables

My-Addr_Dev- 0
My-Addr_Dev-2 0 ariable values from
generic Rack screen

My-Addr_Dev-2 000:AD:04
My-Dev- f r
My-Dev-2 Multiviewer 2 . .
L ariable values edited

My-Dev- VIDEO PROC ONE '
My-Dev- PROD SWITCHER ONE here over-ride

T |

Fig. 8-22: Top Level Screen - Rack A Button’s Link Behaviour Settings

252

Orbit MapView
User Manual

Schematic Variables for Rack B Defined in a New Text File
For Rack B, a new text file will be used to define the schematic variables used on the Rack B
screen, over-riding those on the generic Rack screen:

1 Create a new text file from the Project View.
See Figure 8-23.

Click OK.

B My_C&M_Link-State

File Edit Project View Tools Window RollCall Control and Monitoring iControl Help

(]

My_C8&N

Project C:/Orbit_Proje

o Il ig s oo

Component Empty Tile Global Logic MNetwork File Screen

Network View X o ' ' ' : : : ﬂ
System Alarms |Text File Thgme File Video Tile Video Tile Wall File
Full Screen 1/4 Screen

XY Panel

Description

A plain text file which can be used to store variable overrides.

Details

Mame:

Location: 5] Browse

Fig. 8-23: New Text File

2 Open the new text file. It opens in a text editor.
And enter the required schematic variable values. See Figure 8-24.

3 Click Save.

RackB.bd €

My-Addr_Dev-1=1000:B0:01
My-Addr_Dev-2=1000:B0:02
My-Addr_Dev-3=1000:80:03
My-Addr_Dev-4=1000:B0:04
My-Dev-1=Audio Proc
My-Dev-2=5tds Conv
My-Dev-3=Prod Switcher
My-Dev-4=SPARE

Fig. 8-24: Edit Text File

253

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

4 Open the top level screen.

For rack B’s Button widget:
5 Add a Link Behaviour and configure:
- Path property to point at the rack screen B.
+ Report Link Status set to ‘True’.

- Variable File Path set to the project path to the Rack B text file containing variable
values.

See Figure 8-22.

Top.schx €

Link State Example 11:07:19 06:07:19

Home ‘ ’ Time UK Time NY

Top Level

Rack A

Points at Rack B
Edit Link screen

Name Link
Single Click v True Report Link Status
Path [schematics/Rack-B.schx
Link Mode Screen Link
Target Application Wipdet ext file path
Report Link Status v Tru
[resources/

ariables shown
grayed-out and are
defined in the new
text file

Fig. 8-25: Top Level Screen - Rack B Button’s Link Behaviour Settings

6 Click Close.
7 Click Save.
8 Click Save Project.

254

Orbit MapView
User Manual

Restart Orbit MapView Service

The Orbit Monitoring and Orbit MapView services should be running, as outlined in
Preliminaries, on page 244.
1 Open the Orbit Service Manager web page in a web browser
and click on ‘MapView Service' See Figure 8-26.
The MapView Service page is shown. See Figure 8-27.

Browser window
IP address and IP port of the installed Orbit Services.

Note: Orbit Services are typically installed on a server PC and
the IP address and IP port number entered into the browser are
for the services installed on the server PC.

The address shown in this figure is for Orbit Services installed on
the same PC that is running the Orbit Client.

[Semvice Config X +

Click heading to view < ¢ | ® 1270018080 * ©
this page

Orbit Service Manager

Click to view the

Monitoring Service page SeleCt a Ser\lice

« Monitoring Service

Click to view the .« MapView Service

MapView Service page » Routing Service

= Web Renderer Service
Demo: Orbit Web View

= DensiteControl service

« Email Service

* Recording Service

Note: This is a web browser window, not an Orbit window,

Fig. 8-26: Orbit Service Manager Web Page

255

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

IP address and IP port number of the installed Orbit Services (on a server)

[4 Service Config x> +

<« C @ 127.0.0.1:80

@ Google Chrome isn't your default browser @ Set as default x

Orbit Service Manager

System

MapView Service

The MapView service provides server side functions for a Control and Monitoring project for use by all

Remote Values

Service Status

The "Orbi pView" service is in.= numning ¢ z Stal‘t Service button

Service Control Stop Service

System Settings

Client Domain : 0 S ——emmmeeee R O | Call Domain

Client Interface(s):

Address 0000:FD:00 Clear &

(1]

Unit Name MapView Service Clear ©

Project Settings

The MapView plugin needs access to the project so that it can publish any data required by clients. It can either watch a folder on disk, or obtain the data
from a Git version control system.

Repository Type Local Folder v @

Repository Path C\Orbit_Projects\C&M ProjecisiMy_C&M_Alarm-Beh Clear @
Status The repository is OK.

Startup Delay (seconds): 0

Save Changes Cgancel Changes

/
Leave the Client Interfaces field blank
- an empty Client Interfaces list will use all available interfaces.

Fig. 8-27: Orbit MapView Service Web Page

2 To stop the service, click the Stop Service button.

3 Point the Orbit MapView service at the latest version of the Orbit MapView project,
by setting Repository Type and Repository Path.

4 C(lick Save Changes.
5 Click Start Service to restart the service

256

Orbit MapView
User Manual

Quick Check of Orbit MapView Project

Finally, check that the Orbit MapView project is using the same RollCall domain and that its
top-level screen is set as the home screen.
With Orbit running on the client computer and with the Orbit MapView project open:

1 In the Orbit main menu, click ‘Control and Monitoring > Properties.
2 A properties dialog is shown. See Figure 8-28.

r‘ Properties l ? &1

RollCall

Domain: [100

Current Home
Jschematics/Top.schx

Current Theme

Fig. 8-28: Properties Dialog

3 Check that the displayed RollCall domain number is the same as used by the Orbit Services.

4 Check that the top level screen is set as the current home screen (Project > Set XXX as
Home in main menu.).

IMPORTANT
Top Level Screen as Home Screen
The top-level screen must be set as the home screen. This is done so that
Orbit Services know where the top level of the screen hierarchy is. The
services can then traverse the hierarchy from that point.
To set a top-level screen as the home screen:

+ Open the top-level screen.

+ Click Project > Set xxx as Home in the main menu.

257

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

Exercise the Example

Run the Orbit MapView Project
1 Open the Orbit MapView project.
2 Open the top-level screen and enter Run Mode.

The following is happening:

+ The Orbit MapView project is:
+ running on the client computer;
« monitoring eight devices (four in rack A and four in rack B);
« reporting the state of devices on buttons in the MapView screen hierarchy; and
- indicating the state of devices in the Network View.

+ The Orbit MapView Service is:
+ running on a server computer;

- executing the same Orbit MapView project in parallel to the client computer; and
- providing updated MapView project ‘Link State’information to the client.

See Figure 8-29.

258

Orbit MapView
User Manual

Button border color indicates the state of the lower-level screen

B My_C&M _Link-State o @] =
File Edit Project View Tools Window RollCall Conj gring iControl Help
o Scale (102% ~ | *

Project X Top.sch

Link State Example 11:25:33 06:25:33

Time UK Time NY

Top Level

l themes

Network View

‘ Details 1000:A0:01 - 1000:A0:01

Filter: (®) Header (O Value

Value

L Logged in: admin

System devices are shown in the Network View grouped under ‘Virtual Node’names
according to device RollCall address.

Fig. 8-29: Top-Level Screen Running with All Devices ‘OK’

If the state of monitored devices changes, and hence the state of lower-level screens changes,
then this is reflected in the running Orbit MapView project. See Figure 8-30 to Figure 8-32
below.

259

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

Error State Shown at Top Level

Network View indicates one (or more) error states in devices.

Home button indicates:
One or more error states (and zero or more warning states)

on the Top screen.

Rack button indicates:
One or more error states (and zero or more warning states)

on the Rack A screen.

Rack button indicates:
All OK on the Rack B screen.

= | B |

¥ My _CBM_Link-State

File Edit Project View TJools Window RollCallf iControl Control and Monjtoring Help

Scale (115%) ~ '+

©

Project
Link State Example 10:05:38 05:05:38
Home ‘ ’ Time UK Time NY
Top Level

configurafion. prj

db.users
Network View

Rack A Rack B

Logged in: admin

Click button to open Rack A screen. See Figure 8-31.

Fig. 8-30: Top-Level Screen - Error State on Rack A Screen

260

Orbit MapView
User Manual

Error State Shown at a Lower (Rack) Level

Home button still indicates:
One or more error states and zero or more warning states
on the top screen.

Device button indicates that there are:
One or more error states and zero or more warning states
for device ‘Multiviewer 1’

Device button indicates that there are:
One or more warning states
for device ‘Video Proc.

B My_C&M _Link-State

File Edit Project View Tools Window RollChll jControl Control and Monitoring Help B Details 1000:A0:01 - 1000:40:01

Scale (115%) ~ '
© = = Sort by - Filter: ® Header O Vvalue

S Header Value

Link State Example

TEMP_1_CELSIUS

‘
¥ Details 1000:A0:02 - 1000:A0:02 7] =

Rack A

Sort by - Filter: ® Header O value Clear

configuration.prj

db.L Header Value

Network View

Multiviewer 1 I I
H

Multiviewer 2
|

1
DEO PROC ONE Sorthy - Filter: @ Header (O Value

Header Value

1000:A0:02

‘ Details 1000:A0:03 - 1000:A0:03

: . rning (1)
PJOD SWITCHER ONE y (
1000:AD;

/1

Buttons indicate:
A” OK for devices’ B Details 1000:A0:04 - 1000:A0:04

/ Sortby - Filter: @ Header (O Value

Header Value

Click on a button to open the
Device Information screen.
See Figure 8-32a and b.

In the Network View pane, to show Log Fields for each device:

+ Right-click on a device item and select ‘Details’.
The Details window for the device is shown.

Fig. 8-31: Rack A Screen and Device Details Windows

261

Examples with Behaviours
Example - Screen Link States and Screen Re-Use with Variable Files

Error State Shown at Lowest (Device) Level

Device information screen shows Log Fields whose values are
also shown in the corresponding ‘Details’ window.

¥ My_CaM_Link-State

File Edit Project View Tools Window RollCall Control Control and Monitoring Help
(] Scale (213%) ~

Project

Device Informatior

¥ Details 1000:A0:02 - 1000:A0:02
Sortby ~ Filter: @ Header) Value Clear

Header Value

¥ Detzils 1000:A0:03 - 1000:A0:03
Sort by - Filter: @ Header) Value Clear

Header Value
0] STATE (1)

‘ Details 1000:A0:04 - 1000:40:04

Sortby ~ Filter: @ Header O Value Clear

Header Value

a) Device Information Screen for device ‘Multiviewer 1’

Click to go back
" My_C&M _Link-State @Eﬂl

File Edit Project View o Call iControl Control and Monitoring Hglp

‘ Details 1000:A0:01 - 1000:A0:01
Scale (213%) ~
° Sortby ~ Filter: @ Header O Value

Project Header Value

Device Information

¥ Details 1000:A0:02 - 1000:A0:02
Sortby ~ Filter: @ Header) Value Clear

Header Value

Warning

‘ Detailz 1000:40:03 - 1000:A0:03

Sort by - Filter: @ Header) Value

‘ Details 1000:A0:04 - 1000:40:04

Sortby ~ Filter: @ Header O Value

Header Value

b) Device Information Screen for device ‘'VIDEO PROC ONFE’

Fig. 8-32: Device Information Screens with Device Details Windows:
a) Multiviewer 1 Device.
b) Video Proc Device.

262

Orbit MapView
User Manual

Renaming Virtual Nodes in Network View

While Orbit Services are running,
any ‘Virtual Node’ names may be renamed to more friendly names:
1 Right-click on the node name and select ‘Rename’,

Network View

Virtual Node

Unit Info
Rename
Copy Addre
Virtual Mode 100

My User Folder

Monitoring Service 0000:FF:00

Fig. 8-33: Rename Virtual Node in Network View

2 Enter a new name in the Rename dialog and click OK.

B Rename L ? ﬁ_J

New Name:

Rack A Devices

oK Cancel

Fig. 8-34: Rename Dialog

The Network View node shows its new name. See Figure 8-35.

Network View

Renamed node in Network View

Virtual Node
My User Folder 10
MapView

Fig. 8-35: Renamed Network View Node.

263

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

Example - ‘Control with Take’ for a Manual HCO Switch-Over

Introduction

Preliminaries

264

Select HCO Input: Take pre-selected Input:
@ Input1
O Input2 Cancel in ..

This example shows how the controls for an advanced user-controlled video switch-over can
be easily created for Orbit MapView with no programming. Instead, two ‘radio button’widgets,
one ‘Take' button widget and some simple logic are used.

Simple Manual Switch-over Case

A simple manual user-controlled switch-over could be created with two Radio Button
widgets, each button causing a change-over command to be sent to an external HCO device
using Event Bindings and Command Behaviours (e.g. RollCall v3 Command Behaviour).

However, this example will synthesize a more advanced switch-over arrangement:

Advanced Switch-over

In this example, a ‘Take’ button will be used to apply a video change-over on a Grass Valley
HCO device. A user pre-selects the required HCO signal source and then applies it by clicking
one ('Take’) button.

Furthermore, the ‘Take’ button will only be visible when a signal input source is selected by the
user on the screen. The ‘Take’ button will be hidden again after 5 seconds and the time
remaining for the ‘Take’ button will be displayed on the button face.
A summary of our requirements:

« Two radio buttons to pre-select the HCO input

+ A ‘Take’button to apply the pre-selected input to the HCO device.

- ‘Take’button to be hidden when nothing is pre-selected.

« ‘Take’button should be hidden after a 5 seconds timeout period and any pre-selected
input is undone.

- The ‘Take’ button ‘time remaining’ should be displayed on the button face.

Graphically, the example is shown in Figure 8-36.

QO Input 1
TAKE

O Input2 Cancel in .

Fig. 8-36: HCO Switch-Over Example

In this example, a Grass Valley Densité HCO-3901 card is to be controlled. This device is
assumed to be working under a Grass Valley iControl server.

Orbit MapView
User Manual

Add Widgets

1 Open a new screen (C&M project).

2 Add:

- two Radio Button widgets; and

+ one Button widget.
See Figure 8-37.
3 C(lick Save.

My_HCO-Switch.schx €3

Select HCO Input:

Q Inputl

O Input2

Take pre-selected Input:

TAKE

Cancel in ..

Fig. 8-37: HCO Switch-Over Screen

The next step is to build the ‘behind-the-scenes’ logic that resides within the screen. This is
best built up in stages and tested in stages.

Configure Orbit to Connect to an iControl Server

To connect the Orbit tool to an iControl server:

1 Click iControl > Configuration in the Orbit main menu.
The iControl/Densité Configuration dialog is shown. See Figure 8-38

‘ iControl/Densite Configuration

iControl Server IPs: 10.11.12.13

Password: sssee

Add

Username: densite-manager-username

Delete

Cancel

Fig. 8-38: iControl/Densité Configuration Dialog

2 Add the IP address of the target iControl server.
3 Enter the Username and Password for the Densité Manager.

4 Click OK.

This configures Orbit to connect to an iControl server.

Accessible units are shown in the Network View pane of Orbit.

265

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

266

Add a Behaviour to Control the HCO Device

A Densité Behaviour is required to connect to a parameter on the HCO-3901 device.

To add the Behaviour, either:
« Select the background of the screen and display the ‘Behaviour/Bindings’ graphical editor.
+ Add a Densité Behaviour.
- Configure the Behaviour’s ‘Name; ‘Card Id’and ‘Parameter Id’ properties for the target

HCO-3901 device.
Or:

« Use the Network View method, described in Add Behaviour with Network View Method,
on page 266.

Add Behaviour with Network View Method

This method allows a user to get settings for a Behaviour directly from a device. The Network
View shows the device network that Orbit can see.

The Network View method is described below:

1 Explore the device network in the Network View.
And locate the device required.
(For our example, locate an iControl server and the required Densité device within it.)

2 Right-click on the device item
and select ‘Display Card Parameters’

A list of device parameters is shown in a tab.

(For our example, a list of HCO-3901 Densité device parameters is shown. See Figure 8-39.)

Orbit MapView

User Manual
Network View
iControl server item
HCO-3901 device item
HCO-3901 parameter item
MapView screen tab HCO-3901 device tab

Fig. 8-39: Device Tab

In the device (HCO-3901) tab:

3 Right-click on the HCO-3901’s ‘'vManualSwitchRCP2000’ parameter
(i.e. the selected HCO input)
and select ‘Copy as Behaviour.

Return to the Orbit MapView screen (click on the MapView screen’s tab).

In the Orbit MapView screen:

4 Click the Edit Behaviours button to show the ‘Behaviour and Binding’ graphical editor.
And click the Paste button.

For our example, this adds a Densité Behaviour configured to interface to the HCO-3901’s
parameter. See Figure 8-40.

The Densité Behaviour will now control and reflect the HCO-3901's selected input.

267

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

268

My_HCO-Switch.schx (*) @
Select HCO Input: Take pre-selected Input:

Q Input1

TAKE Paste button

O Input2 Gancel e

Behaviour.

All

Alarm

Alarm Acknowledge
Alarm M

Audio Level

Audio Loudn

Bindings
Edit HC 301 Densite Beh

ET CO-3901 Densite Beh
cardld
paramlds vManualSwitchRCP200

Write Mode Read/Write

Fig. 8-40: HCO-3901 Densité Behaviour Pasted In

Orbit MapView
User Manual

Configure Radio Buttons

The Densité Behaviour value may now be changed on this Orbit MapView screen and reflected
on the HCO-3901 device. To do this via our radio buttons:

1 Select the “Input 1” Radio Button widget and add a Radio Button Binding.
2 Configure the Binding:

- to use the Densité Behaviour as its source Behaviour; and

«» set ‘Checked when value is equal to:"to *Input 1.
3 Select the “Input 2” Radio Button widget and add a Radio Button Binding.
4 Configure the Binding:

+ to use the Densité Behaviour as its source Behaviour; and

+ set ‘Checked when value is equal to:'to “Input 2~.
5 Click Close.
6 Click Save.

My_HCO-Switch.schx (*) @

Select HCO Input: Take pre-selected Input:

O Input1
_Inp 2 : Cancel ;.TAKE

Radio Button Binding

CTRA Rack

Local Value Behaviour (on the screen background)
Bindings
Fig. 8-41: Orbit MapView Screen So Far

Exercise the Radio Buttons
1 Click the Test button and exercise the radio buttons.

The Densité Behaviour value changes according to which radio button is selected.
And the HCO-3901 card changes input accordingly. (If Orbit is connected to the HCO-
3901.)

2 Click the Test button again to halt exercising.

269

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

Configure Pre-select for TAKE Button

Act on a button click

To implement a pre-select capability, the resulting value from the radio buttons must be stored

locally in the Orbit MapView screen and only passed to the Densité Behaviour when the user
clicks the TAKE button.

On the Orbit MapView screen with the ‘Behaviour and Binding’ graphical editor visible:
1 Select the Orbit MapView screen background.
2 Add a Local Value Behaviour named ‘PreSelected Input Beh:

And:

3 Edit the Radio Button Bindings to now use ‘PreSelected Input Beh'’as their source
Behaviour.

Then:
4 Select the TAKE button widget.
5 Add an Event Binding for the TAKE button and configure it as shown in Figure 8-42 below.

Use the value of this Behaviour to set this target Behaviour’s value

Edit Do TAKE Event

Common Properties

Name: Do TAKE Eve nﬂ

Source

O Condition

@® Handle widget event LHS:

click

(© Handle behaviour value change RHS: ® set hEhaK /a

Behaviour ~

270

-

Operator:

reSelected Input Beh

Fig. 8-42: TAKE Button Event Binding

6 Click Close.
7 Click Save.

The resulting value from the pair of radio buttons will be sent to the Densité Behaviour to
control the HCO-3901 device when TAKE is clicked.

However, if the HCO-3901 device is changed by some other means, then this must be reflected
on our Orbit MapView screen. To implement this, on the Orbit MapView screen:

8 Select Orbit MapView screen background.

9 Add a Mapped Binding and configure it as shown in Figure 8-43.
10 Click Close and click Save.

Orbit MapView
User Manual

Edit HCO Value Bind
Common Properties
Name: HCO Value Bind
Source Behavipdr: HCO0-3901 Densite Beh

Behaviour Valje: | vManualSwitchRCP200

Bind Rules: Operator
Default

Move Down Move Up

Fig. 8-43: Mapped Binding Configured

This will ensure the local value is updated if the HCO-3901 changes.

Note: Unlike a Property Binding, a Mapped Binding requires a default
rule to be in-place. (Because at least one rule must match for the Binding

to pass a value.)
A Property Binding with no rules will still pass a value:
A Mapped Binding will not.

The Orbit MapView screen so far is shown in Figure 8-44.

My_HCO-Switch.schx €3

Select HCO Input: Take pre-selected Input:

QO Input1
TAKE

O Input2 Cancel in ..

Al e .
Densité Behaviour

Alarm

Audio Lev Mapped Binding
Audio Loudn
io Pha
Windo
A Cankian
Local Value Behaviour

Bindings

Fig. 8-44: Orbit MapView Screen So Far

271

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

TAKE Button Visibility

The TAKE button shall be visible when the pre-selected value is different to that on the HCO-
3901 device.

On the Orbit MapView screen, in the ‘Behaviour and Binding’ graphical editor:

1 Select the TAKE button widget
and add a Logical Binding named ‘Show TAKE Button Bind.

This will be used to compare two values.
2 Edit the Logical Binding settings, see Figure 8-45.
Add a row and configure the Binding as shown in Figure 8-45.

‘Input’ Behaviours = 'HCO-3901 Densité Beh'and ‘PreSelected Input Beh’

Edit Show TAKE Button Bind

Common Properties

Name: Show TAKE Button Bind

Logical Operator: OR ~

LHS Type LHS Behaviou LHS Value Operator RHS Type RHS Behaviour RHS Value

Behaviour HCO-3901 Densite Beh vManualSwitchRCP200 Equals Behaviour PreSelected Input Beh Value

Result:

True Result(Literal A

False Result_Literal =

272

Add
Delete
Target:

False O widget

True @® Behaviour: TAKE Button Visibility Beh

New Local Value Behaviour as target
Fig. 8-45: Logical Binding Settings

When either 'HCO-3901 Densité Beh’ or ‘PreSelected Input Beh’ Behaviour values (on the screen
background) change, the Logical Binding will check and set the ‘'TAKE Button Visibility Beh’
Behaviour value to:

- 'False’if they are equal; or to
« ‘True'if they are not.
Then:

3 Add a Property Binding on the button.
And set its:

- ‘Source Behaviour'to be the ‘TAKE Button Visibility Beh’ Behaviour; and
+ ‘Property to bind’to ‘Visibility'.
4 Click Close and click Save.

The Bindings added so far are shown in Figure 8-46.

Orbit MapView

User Manual
Select HCO Input: Take pre-selected Input:
O Input 1] - [Event Binding Logical Binding
© TAKE ©
O Input2 Canced i ..
I L]]

Behaviours

All

Alarm Acknowledgement
k

C Windowr

Command Line

Load Control Screen
Local Timer
Local Value

Command
Command

New Local Value Behaviour
Fig. 8-46: TAKE Button Bindings

Exercise the TAKE Button Visibility
1 Click the Test button and exercise the radio buttons. (See Figure 8-47.)

Select HCO Input: Take pre-selected Input: Select HCO Input: Take pre-selected Input:
@® Inputi TAKE @® Inputi
O Input2 Cancel in .. Q Input2
a) Select Input 1, then click TAKE. TAKE disappears,
Select HCO Input: Take pre-selected Input: Select HCO Input: Take pre-selected Input:
Q Inputi TAKE Q Input1
@ Input2 Cancel in .. @ Input 2

b) Select Input 2, TAKE re-appears. Click TAKE again, TAKE disappears.

Fig. 8-47: Exercising TAKE Button Visibility

2 Select an input on the radio buttons.

273

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

3 Click TAKE.
The TAKE button disappears after it is clicked.
4 Select the other input.
The TAKE button appears.
To halt the exercising:
5 Click the Test button.

Cancel TAKE Pre-Select after 5 Seconds

In a real-life use-case, it is useful to cancel the pre-selected value automatically if it has not
been ‘taken’ within a short time period (say within 5 seconds of when it was set).

To implement this, a timer be driven from the TAKE button visibility:

We can use a Local Timer Behaviour, driven off the TAKE button’s visibility value:

1 Select the TAKE Button widget
and view the ‘Behaviours and Bindings’ graphical editor.

2 Add a Local Timer Behaviour called ‘Cancel Timer Beh’.
3 Add an Event Binding and configure it to:
« start the ‘Cancel Timer Beh’ when ‘TAKE Button Visibility Beh’is set to ‘True'’
See Figure 8-48.
This Event Binding will handle starting the timer.

Note: The Event Binding is configured to execute the ‘Cancel-Timer’
Behaviour by passing it the argument ‘start’

274

Orbit MapView
User Manual

Edit Timer Start Event Bind
Common Properties

Name: Timer Start Event E:inl:l|

Source Condition Target

O Handle widget event LHS: Link I Cancel-Timer Beh
@ Handle behaviour value change

(® Trigger behaviour
TAKE Button Visibility Beh Operator: |Equals TmiE
RHS: True Literal * | start

(O set behaviour value

Fig. 8-48: Timer Start Event Binding and Settings

275

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

4 Add another Event Binding and configure it to stop the ‘Cancel Timer Beh’ when ‘TAKE
Button Visibility Beh'is set to ‘False’ See Figure 8-49.

This Binding will handle stopping the timer.

Note: The Event Binding is configured to execute the ‘Cancel-Timer’
Behaviour passing it the argument ‘stop’.

Edit Timer stop Event Bind
Commeon Properties

Name: Timer stop Event E:ind|

Source Condition Target

O Handle widget event LHS: Link to source Cancel-Timer Beh
@ Handle behaviour value change

@ Trigger behaviour
TAKE Button Visibility Beh Operator: |Equals .
RHS: False Literal stop

(O set behaviour value

Fig. 8-49: Timer Stop Event Binding and Settings

276

Orbit MapView
User Manual

5 Add another Event Binding and configure this as shown in Figure 8-50.

This will be used to revert the value of the PreSelected Input Beh back to be the same as
the HCO-3901 device after a 5 second timeout period. (Thus causing the TAKE button to

disappear.)

Edit Timer TimedOut Event Bind
Common Properties

Name: Timer TimedOut Event E:inl:l|

Source Condition Target

a widget event Q. b Link to sour
(O Handle widget even LHS: & Link to source Preselected Tnput Beh

® Handle behaviour value change
~ S - O Trigger behaviour
Cancel-Timer Beh Select Operator: | Greater Than or Equal @ set behavi |
Set behaviour value
RHS: 5
Behaviour = -3901 Densite Beh vManualSwitchRCP200 =

Fig. 8-50: Timer Timeout Event Binding Settings

6 Click Close.
7 Click Save.

Exercise the ‘Cancel Pre-Select’ Timeout
1 Click the Test button and exercise the radio buttons.
Five seconds after pre-selecting an input on the radio buttons, the TAKE button is hidden
and the pre-selection reverts back.
To halt the exercising:
2 Click the Test button again.

277

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

Display the TAKE Timeout on the Button Face

As a useful aid to the user, the remaining time before the ‘pre-select’is canceled etc. is to be
shown on the TAKE button face. To do this, the remaining time needs to be calculated (i.e. 5 -
‘timer value’) and the value written onto the TAKE button.

1 Add a Local Value Behaviour called Timeout Value
and set its initial value to 5.

This is the (fixed) length of the timeout.

2 Add a Local Value Behaviour called Remaining Time Beh
and set the initial value to 0.

This will hold the time remaining.
3 Add a Math Binding and configure it to:
« subtract Cancel-Timer Beh (timer value) from Timeout Value; and
« place the result in Remaining Time Beh.

See Figure 8-51.

Setinitial value of

Behaviour to 5.

Edit Calc Remaing Time Bind
Common Properties

Name: Calc Remaing Time Bind|

Operation Target
LHS: Timeout Value Result: Remaining Time Beh
Operator: Subtract

RHS: Cancel-Timer Beh

Fig. 8-51: Math Binding Settings

4 Add a Property Binding. Configure this to:
+ use Remaining Time Beh as the source Behaviour;
- write to the button’s Lower Caption property; and to
« use a string format with a prefix “Cancel in:”.
See Figure 8-52.

278

Orbit MapView
User Manual

5 Click Close.
6 Click Save.

Edit Lower Caption Bind

Common Properties

Name: Lower Caption E:ind|

Source Behaviour: Remaining Time Beh
Property to bind: |Lower label

Bind Rules: Operator Expre

Default Cancel in: %1

re Down Move Up A Delete

Fig. 8-52: Configuring Lower Label Caption Property Binding

279

Examples with Behaviours
Example - ‘Control with Take’ for a Manual HCO Switch-Over

Exercise the Timeout Display on the Button Face

1
2

Click the Test button and exercise the radio buttons.

Select an input source on the radio buttons.
The TAKE button appears.

Click TAKE.
The TAKE button disappears.

Select another input on the radio buttons.
The TAKE button appears.

This time though, do not click the button.

The timeout is shown on the button face as a count down.

When the count down reaches 0, the button disappears and the radio button setting
reverts.

To halt the exercising:
6 Click the Test button.

Bindings and Behaviours on the Take Button

The overall Behaviours and Bindings on the TAKE button are shown in Figure 8-53.

My_HCO-Switch.schx €

Take pre-selected Input:

Select HCO Input:

Q Input1

O Input2

Behaviours

All
Alarm Acknowledgement

Load Control Screen
Local Timer

Local Value

Lock

MV-Flex Control

SNMF Get
SNMP Set

M TAKE button

ime remaining

Initial value =5

Fig. 8-53: TAKE Button Behaviours and Bindings

280

9 Server-side Processing Examples

Summary

Server-side Processing Examples

Orbit Global Files for Server-Side Processingo.oenseessesseseenss page 282
On Orbit MapView Screens (Client-Side Processing).............cccveveiiiiiininn... page 282
Server-Side Processing with Orbit MapView Projects..............ccoveuuiiivina.. page 282

Example - Simple Global File for Server-Side Processing page 283
Orbit MapView Prelimingaries.oeuueeuiei ittt eiieeiaeeiaes page 283
Build the GIObaIX Fileeeee et page 283
Build aMapView Screen File.o.eueiieie ittt iieeieeanann, page 286
Configure Orbit SEIVICESeu ettt et ettt eaeas page 288
Exercise the Globalx Exampleeuiiiiie ittt iieeiieinann, page 289

Example - Monitoring by EXCEPLION.......evveevvrsvcrsversersrirsrins page 291
Build the LOWer-Level SCreensue e e it iie e iieeiieeeiaeanns page 291
TOP-LEVEISCIEON. et e ettt page 293
Exercise the EXAMPIe. ... ettt et page 299

Example - Monitoring the Rate of Change of a Value page 302
Configuring the Orbit Monitoring Service.couuueeieieeeineeinneninans page 302
Monitoring Rate of Change with MapViewcccevuieiiiiiiiiinennnnnnn. page 305

Example - ‘Network View’ User Folder and Virtual AlGrms................ocoveeeseeneeunnce page 307
Prepare aUser Folderuuueuie ettt ettt page 307
Exercise the User FOIAerouuuui ittt ettt eans page 309
Masking Alarms from the Network ViewPanec..couieiiiiiiininnnnn.. page 311
INVerting AlGImsttt et et e et page 312
Filtering AlQrms.t et e e et et page 313

The Orbit MapView client application typically works with some other services which run
on some system server computer. Services include: Log Server, iControl GSM, iControl
Densité Manager and Orbit Services. These provide server-side processing for the Orbit
MapView client application. For example, they can provide aggregated alarm messages
formed from one or other combinations of device status messages.

(Please refer to separate documentation for information about the Log Server, Orbit
Services and iControl.)

Additionally, an Orbit MapView project may define some server-side processing itself.

281

Server-side Processing Examples
Orbit Global Files for Server-Side Processing

Orbit Global Files for Server-Side Processing

Log Field values are remote items, typically generated by system devices (for example a
Densité module) or by some processing in the system (for example, a Log-Field-aggregating
function may run by a Log Server or by an Orbit Monitoring Service).

On Orbit MapView Screens (Client-Side Processing)

Orbit MapView screens can access Log Field header-values via various Behaviours (for example,
via Log Field and Densité Behaviours). These Behaviours can read or write Log Field header
values, depending on how they are configured, and can interact with other screen widgets,
Behaviours and Bindings.

MapView screen values written to a Log Field Behaviour ("Write Mode’ property set to ‘Write
Only’ or ‘Read/Write’) will be sent out to an Orbit Monitoring Service and onwards to the
system. Thus system Log Field values may be changed by a MapView screen via some logic
defined on the MapView screen.

This processing logic runs client-side in the MapView project on the client computer.

Server-Side Processing with Orbit MapView Projects

282

It is possible to specify some processing logic to be executed by the Orbit MapView Service,
OMS, (i.e. server-side) and, hence, be independent of whether the client computer is powered
up or down. The processing logic is specified in a .globalx file in an Orbit MapView project.
To do this, in the Orbit project:

- create a new file of global type (a.globalx file);

« place the required logic inside the.globalx file;

« save the file and save the entire project; and

- ensure the Orbit MapView Service is using the same Orbit MapView project. (This may

require restarting the OMS.)

When the Orbit MapView project is subsequently run, the logic in the.globalx file is executed
by the OMS.

Orbit MapView
User Manual

Example - Simple Global File for Server-Side Processing

Globalx Example
Address= 0000:E2:00

Enter User Log Field Value:

[Device status is OK |

MY _HEADER_1= Device status is OK

MY HEADER 2= DEVICE STATUS IS OK

This example will:
« use a virtual device with an unused RollCall address; and
- create a globalx file to process a Log Field of the new device.
And then use a MapView screen to:
. write a user-entered value to a Log Field of the new device; and
- read back and display Log Field values.

Orbit MapView Preliminaries

From the Orbit MapView project home screen:
1 Click ‘Control and Monitoring > Properties’in the main menu.

2 Set the RollCall Domain.
This must be identical to the domain used by the Orbit Services.

3 Click OK.

4 If the project is stored in a Git repository, click ‘Tools > Options > Remotes’
and enter the URL of the repository holding the project.

5 Click ‘RollCall > Network Map'to set up IP address of any Log server being used.

Build the Globalx File

In the Project pane, create a new.globalx file.

1 Create a new folder in the Orbit MapView project and call it ‘Globalx’
(Right-click on project name in Project View and select ‘New Folder’)

283

Server-side Processing Examples
Example - Simple Global File for Server-Side Processing

B My_C&M Globalx

File Edit Project View Tools Window RollCall rf‘ New File ==

(4]

Project

File Type

o i o o

Component Empty Tile | Global |Logic Network File Screen
bine-Binding
nk-Beh
My_Example
_Globalx

System Alarms Text File Theme File Video Tile Video Tile Wall File
Full Screen 1/4 Screen

| New File
o My_Globabx.globalx| ' =

B components Import File(
Import Folder

XY Panel
Description
% New Folder i
A global file contains behaviours and bindings intended to be run on the server.
Rename Folder

on.prj Delete Folder

Details

Mame: | My_Globaly

Location|: /Globalx Browse

Cancel

Fig. 9-1: Creating a New File within the Orbit MapView Project

2 Create a new file of type ‘global’in the new ‘Globalx’ folder.
Click OK in the New File dialog.
4 Open the new globalx file. (Double-click on it in the Project View.)
(The opened view is similar to the ‘Behaviour and Bindings’ graphical editor.)

5 Add two Log Field Behaviours and one String Op Binding,
and configure these as follow for an unused RollCall address (0000:E2:00 is used here):

« One Log Field Behaviour to read Log Field header ‘MY_HEADER_1".
« One Log Field Behaviour to write to Log Field header ‘MY_HEADER_2'.

- String Op Binding to write an UPPER CASE version of MY_HEADER_1 value to
MY_HEADER_2.

See Figure 9-2.

284

Orbit MapView
User Manual

Edit String Op

Common Properties

Name: String Op

Source

Input: My Log Field Beh H1 MY_HEADER_1 ~ Select

Edit My Log Field Beh H1

Name My Log Field Beh H1 Name

RollCall A {Addre
Head MY_HEADER_1,A,B
Read Only

Write Mode

Function Target

Function: Uppercase : My Log Field Beh H2
Search Term:

nsitivity: [
Start Index:

Length:

Edit My Log Field Beh H2

My Log Field Beh H2
RollCall Address {Addr

Headers MY_HEADER,

Write Mode Write Only

Fig. 9-2: Configuring Two Log Field Behaviours and one String Op Binding for Global File

6 Click Save.

This has created a file which will be executed by the Orbit MapView service when the project is
run on the client PC. The globalx file will be executed in parallel to the project.

Note: The Orbit MapView service must be:

+ pointed at the Orbit project; and
- restarted to pick up the latest Orbit project version.

285

Server-side Processing Examples
Example - Simple Global File for Server-Side Processing

Build a MapView Screen File

286

v p W N =

6
7
8

Create a new MapView screen file.

Add a Text Edit widget onto the screen schematic.

Select the Text Edit widget and add a Local Value Behaviour.
Deselect the Text Edit widget.

Right-click in the screen background and select ‘Variables....
The Variables dialog is shown.

Set the value of the variable named ‘Address’ to ‘0000:E2:00’.
Click OK.
Click Save.

This has set up the RollCall address on the screen.

Next:

9

10
11

12
13

Add three Log Field Behaviours
and configure these as follow for RollCall address 0000:E2:00:

+ One Log Field Behaviour to use the Text Edit value Behaviour and write its value to Log
Field header ‘MY_HEADER_1".

« One Log Field Behaviour to read Log Field header ‘MY_HEADER_1".
« One Log Field Behaviour to read Log Field header ‘MY_HEADER_2'.
See Figure 9-3 on page 287.

Click Save.

Add two Label widgets
and, using Direct Bindings, configure:

+ One label to show the value of Log Field MY_HEADER _1.
+ One label to show the value of Log Field MY_HEADER_2.
Click Close.
Click Save.

Orbit MapView
User Manual

Edit Direct

R Set variable ‘Address’ for the screen example
Common Properties

- T =
Name: Direct {~} Variables ? |

Source Behaviour: MY TextEdit Value Beh Name ~ Type Value
0000:E2:00
Mode: Read/Write

Format String:

ter: New New(N; Jelet
Target: WO Log Field Beh H1 Filter New New(N) Delete

oK Cancel Apply

Close

My_Screen.schx @

Globalx Example

Address= 0000:E2:00
Enter User Log Field Value: Undock Window
[| Full Screen
Run Mode
MY_HEADER_1= Label e

MY_HEADER 2= Label Select All
Deselect All

Lock
Resize to widgets
Variables... k

Behaviours

All
Alarm
Alarm Acknowledgement Edit Behavi
Alarm M
Audio Level
Audio Loudn
Audio Phas

Window

Connection Mode

Display Details
Email

Behaviour properties

Edit RO Log Field Beh H1 Edit WO Log Field Beh H1

Name RO Log Field Beh H1 Name WO Log Field Beh H1
RollCall Address {Addr RollCall Addr {Addr

Headers MY_HEADER_1 Headers MY_HEADER_1

Write Mode Read Only Write Mode Write Only

Edit RO Log Field Beh H2

Name RO Log Field Beh H2
RollCall Addr {Address}

Headers MY_HEADER_2
Write Mode Read Only

Fig. 9-3: Configuring Address Variable and Three Log Field Behaviours

287

Server-side Processing Examples
Example - Simple Global File for Server-Side Processing

Configure Orbit Services

The Orbit services are set up via the Orbit Service Manager web page on the server computer.

Orbit Monitoring Service
1 Set Client Domain to the same domain as used by Orbit MapView.
2 Set a unique RollCall address.
3 IfaLog Server is used, then set the Log Server Domain and IP address.
4 Start the service.

MapView Service
1 Stop the service.
2 Set Client Domain to the same domain as used by Orbit MapView.
3 Set a unique RollCall address.

If the Orbit project is stored in folders:
4 Set Repository Type to ‘Local Folder'.
5 Set Repository Path to the path to the Orbit MapView project.
If the Orbit project is stored in a Git repository:
6 Set Repository Type to ‘Git Repository'.
7 Set Repository Path to the Git repository URL to the Orbit MapView project.

For example, http://172.10.70.101:8081/Git.Server/My_Project.git

8 Click Save Changes.
9 Start the service.

288

Orbit MapView
User Manual

Exercise the Globalx Example

The Orbit MapView screen can now be exercised:

1

When the Orbit services are pointed at the Orbit MapView project and started,
the Orbit MapView service (server-side) loads the Orbit MapView project and executes the
logic in the globalx file.

For our example,
this logic creates a virtual device within the Orbit MapView service with the specified
RollCall address and with two Log Fields (MY_HEADER_1 and MY_HEADER_2).

Start exercising the MapView screen:

2
3

Click the ‘Test Behaviour/Bindings’icon (E).
Enter some (lower case) text into the Text Edit widget. Press Enter.
The user-entered value is written to a Log Field of the virtual device.

The globalx logic then writes an UPPER CASE version of the text to a second Log Field of
the virtual device.

Both Log Fields of the virtual device are reflected in the Map View screen.
See Figure 9-4 on page 290.

In Figure 9-4, the following is being exercised:

The user-entered text value (1) is passed to the Log Field Behaviour (2).

And it is then written to the Log Field header MY_HEADER _1 on the virtual device and
shown in its ‘Details’ window (3).

The globalx logic generates an UPPER CASE version of MY_HEADER_1's value and writes
this to MY_HEADER_2 on the virtual device (4).

Log Field Behaviours on the screen read the values of both headers (5)
and these are shown on labels on the Orbit MapView screen (6).

Finally:

4

Click the Test Button again to stop exercising the screen.

289

Server-side Processing Examples
Example - Simple Global File for Server-Side Processing

(1) User-entered text value (2) Log Field Behaviour

Test Button
\

B My_C&M Globalx (%)
File Edit Project View\ Tools Window RollCall Control and Monitoring iControl Help

° Ccale (94%) ~

Project X My_Screen.schx & Properties

_Globalx
balx Globalx Example
o My_Globabe.globakx
B components Address= 0000:E2:00
B panels

Enter User Log Field Value:

(1) | (Device status is OK]

MY_HEADER_1= | Device status is OK

MY_HEADER 2= | DEVICE STATUS IS OK
(6)

All
Alarm
Alarm Acknowle
Alarm
s Monitoring Service 0000:... Audio L
Audio Loudness

et
‘ Details 0000:E2:00 - 0000:E2:00

Sortby ~ Filter: (@ Header (O Value fi

Header Value

() ! Alarm List 'i'

I

(3) Vir‘tual device’s (4) Globalx-generated
Log Field Log Field value (5) Log Field Behaviours

(6) Displayed values

Fig. 9-4: Exercising the Global File Example

290

Orbit MapView
User Manual

Example - Monitoring by Exception

Priority: 3 1000:E0:02 | Priority: 2 1000:E0:03

[=lta

My Delta Channel

Tue Nov 6 13:48:47 2018 GMT

This example creates a simple Orbit MapView project that demonstrates monitoring by
exception. It uses:

+ the Monitor by Exception widget;

the Orbit services;

Label widgets and the Angle Bracket < > syntax.

Variables and screen re-use.

Image file project resources.

The example assumes a system to be monitored has:
- Orbit services running.
- Several devices exist using RollCall addresses 1000:D0:01 to 1000:D0:08.
+ Some unused RollCall addresses 1000:E0:01 to 1000:E0:08.

« Orbit Monitoring service processing Log Headers:
MY_LOG_HEADER, MY_LOG_ANOTHER, and MY_LOG_YETANOTHER.

Build the Lower-Level Screens

First, create a new Orbit MapView project.

Build Screen to Monitor One Device

1 Create a new screen schematic, ‘My_One-Device.schx'

2 Add aLabel widget and set:
« Caption property to {Address}

3 Add a second Label Widget and set the caption property to
« Caption propertyto STATE=

4 Add a third Label Widget and set the caption property to
» Caption propertyto <STATE>

5 Click Save.

My_0One-Device.schx

0000:00:00
STATE= <STATE>

Fig. 9-5: My_One-device.schx

291

Server-side Processing Examples
Example - Monitoring by Exception

Set label caption
properties to:
fAddr_1},
{Addr_2},... etc.

292

Screen ‘My_One-Device.schx’ will monitor the ‘state’ at one RollCall address.

Build Screen to Monitor many Log Fields on One Device

1 Create a new screen schematic, ‘My_Many-LogFields.schx.
2 Add aLabel widget and set:
« Caption property to {Address}

3 Add more Label widgets, and configure them as shown in Figure 9-6.

4 Click Save.

My_Many-LogFields.schx

0000:00:00
STATE=

MY_LOG_HEADER=

MY_LOG_ANOTHER=

<STATE>
<MY_LOG_HEADER>
<MY_LOG_ANOTHER>

My_LoG YETANOTHER=-< MY _LOG_YETANOTHER>

Fig. 9-6: My_Many-LogFields.schx

Screen ‘My_Many-LogFields.schx’ will monitor several Log Field at one RollCall address.

Build Screen to Monitor many Devices

1 Create a new screen schematic, ‘My_Many-Devices.schx'

2 Add Label widgets and configure as shown in Figure 9-7.

My_Many-Devices.schx €

Address

0000:00:00
0000:00:00
0000:00:00
0000:00:00
0000:00:00
0000:00:00

STATE=

<0000:00:00,STATE>
<0000:00:00,STATE>
<0000:00:00,STATE>
<0000:00:00,STATE>
<0000:00:00,STATE>
<0000:00:00,STATE>

Fig. 9-7: My_Many-Devices.schx

3 Right-click on the screen background and select ‘Variables...
The Variables dialog is shown for declaring screen variables.
4 Add screen variables Addr_1 to Addr_6, as shown in Figure 9-8.
Leave the values set to their default 0000:00:00 values. (The actual values will be specified

in a Monitor by Exception widget configuration.)

Set label caption properties to:
<{Addr_1},STATE>,
Al - rddr 2}, STATE>.. etc.

Orbit MapView
User Manual

{~} Variables [? % |
MName B Type
Addr_1 Address 0000:00:00
Addr_2 Address

Addr_3 Address

Addr_4 Address

Addr_5 Address

Addr_6 Address 0000:00:00

New New(N) Delete

oK Cancel Apply

Fig. 9-8: Screen Variables Declared

5 Click OK.

Note: The screen variables here are declared only. Their values will be set
when configuring a Monitor by Exception widget.

6 Click Save to save the screen.

Screen ‘My_Many-Devices.schx’ will monitor the state at six RollCall address.
Top-Level Screen

Add a Monitor by Exception Widget:
1 Create a new screen schematic, “Top.schx.

2 Add a Monitor by Exception widget by clicking on the Exception Monitoring icon. See
Figure 9-9.

Top.schx (*)

Monitoring by Exception widget (unconfigured)

Exception’Monitoring icon
Fig. 9-9: Exception Monitoring Widget Added to Screen

293

Server-side Processing Examples
Example - Monitoring by Exception

3 Select the widget
and, in the Properties box for the ‘Item Configuration’ property, click on the l icon.

The Monitor by Exception widget configuration dialog is shown. See Figure 9-10.

¥ Orbit 7l &

Priority ~ Address Display Image Use Link State

Cancel

Fig. 9-10: Monitoring by Exception Widget Configuration Dialog

Configure the Monitor by Exception Widget

1 Click Add five times.
Five line items appear. See Figure 9-10.

Modify the first line item:

1 Enter an ‘Address’ of 1000:D0:01
(Note: This is an address of an existing device.)

2 Enter a Title'text.

Modify the second line item:

1 Enter an ‘Address’ of 1000:E0:01
(Note: This is an unused address.)

2 Enter a Title' text.
3 Inthe ‘Link’ column, add the path to the ‘My_One-Device.schx’file (created earlier).
4 Set'Use Link State’to True’

The first two lines have been configured, see Figure 9-11.

294

Orbit MapView
User Manual

Priority cell

[orbit [EER)

Title Display Image Use Link State

Dev 1 (Device)

Dev 1 (Schematic) fschematics/My_One-Device.schx

Duplicate A Delete

Cancel

Variables button
Fig. 9-11: Two Line Configured

5 Select the ‘Priority’ cell in the second line item, and click on the Variables button.
The screen variables setting dialog is shown, see Figure 9-12.

B Orsit (2] =

Schematic V

Address 1000:D0:01

Fig. 9-12: Setting Screen Variables

e screen variables of the ‘Link’ screen are shown in a table.
Th bl f the ‘Link’ h tabl

6 Set the ‘Address’variable to 1000:D0:01
(Note: This is the address of an existing device.)

7 Click Back.

The first two line items are now configured to monitor the same device (address 1000:D0:01)
but by different Monitoring by Exception modes (schematic overview and device overview).

Modify the third line item:

1 Set the ‘Address’ variable to 1000:E0:02
(Note: This is an unused address.)

2 Enter Title'text.

295

Server-side Processing Examples
Example - Monitoring by Exception

3 Set ‘Display Image’to an image file, one which has been previously created and imported
into the project.

4 In the 'Link’ column, add the path to the ‘My_Many-LogFields.schx’file (created earlier).
5 Set ‘Use Link State’to ‘True’

6 Select the ‘Priority’ cell in the third line item, and click on the Variables button.
The screen variables setting dialog is shown.

7 Set the ‘Address’ variable to 1000:D0:02
(Note: This is the address of an existing device.)

This has configured the third line item to monitor several Log Fields on one device. See
Figure 9-13.

Priority ~ Address Title Display Image Use Link State

Dev 1 (Device)

Dev 1 (Schematic)

Variables Duplicate

Select row in dialog,

7

1000:D0:02

Fig. 9-13: Third Line Item Configured

Modify the fourth line item:
Set the ‘Address’ variable to 1000:E0:03 (Note: This is an unused address.)
Enter ‘Title' text.
Set ‘Display Image’to an image file previously imported into the project.

Set ‘Use Link State’to ‘True’.

Select the ‘Priority’ cell in the third line item, and click on the Variables button.
The screen variables setting dialog is shown.

7 Set the listed variables to:
« Addr_1 to 1000:D0:03
« Addr_2 to 1000:D0:04
« Addr_3 to 1000:D0:05

1
2
3
4 In the ‘Link’ column, add the path to file ‘My_Many-Devices.schx’ (created earlier).
5
6

296

Orbit MapView
User Manual

+ Addr_4 to 1000:D0:06
« Addr_5 to 1000:D0:07
+ Addr_6 to 1000:D0:08
(Note: These are addresses of existing devices.)
8 Click Back.

This has configured the fourth line item to monitor several devices. See Figure 9-14.
9 Click OK.

Priority ~ Address Display Image Use Link State

1000:E0:01 Dev 1 (Schematic) [schematics/My_One-Device.schx true
1000:E0:02 Dev 2 s.schx true

My Delta Channel

Variables Duplicate Al Delete

Cancel

Fig. 9-14: Fourth Line Item Configured

Modify the fifth line item:

1 Set the ‘Address’ variable to 1000:D0:09 (Note: This is an address of an existing device.)
2 Enter ‘Title’ text.

3 Set ‘Display Image’to an image file previously imported into the project.

4 Inthe ‘Link’ column, add the path to project file ‘My_One-Device.schx’ (created earlier).
5 Set‘Use Link State’to ‘False’

This has configured the fifth line item to monitor one device directly with a linked screen which
does not contribute to the state of the monitoring, but is for information only. See Figure 9-15.

297

Server-side Processing Examples
Example - Monitoring by Exception

Priority = Address

1000

1000:E0:02

Title Display Image
Dev 1 (Device)
Dev 1 (Schematic)
Dev 2 fimages/My_XYZ.png

My Delta Channel i /My_Delta.png

My Sport Channel / 'My Sport.png

Use Link State

/schematics/My_One-Device.schx

[schematics/My_Many-LogFie

/schemat

Cancel

Fig. 9-15: Fifth Line Item Configured

6 Click OK.

Further widget properties:

1 With the Monitor by Exception widget selected, in the Properties box,

set:

+ Property ‘Extended Style > Sort/Filter Options > Hide Below State’ to O.

This is useful for debugging and will ensure Monitor by Exception icons are not hidden

when their

state is OK.

The designed top level screen is shown in Figure 9-16.

Priority: 1 D0 || Priority:

My Sport Channel My

“spoRr| E=ita

z2 1000:E0:8 | Priority: 3 100:E0:02 | Priarity: 4 1006:EG:00 | Priarity: 5 1000: £

SN/

Delta Channel Dev 2 (Log Fields)

Mon Now 5

Mon Nov 5 ‘Mon Now 5 13:33:46 2018 GMT

Dev 1 (Schematic) | |Dev 1 (Device)

Mon Now 5 13:33:46 2018 GMT Mon Now 5 13:33:46 2008 GMT

Fig. 9-16: Top Screen with Monitor by Exception Widget

2 Click Save to save the screen.

3 Click Save Project to save the whole project.

298

Orbit MapView
User Manual

Exercise the Example

The Orbit Monitoring service should be running. Then:

1 Point the Orbit MapView service at the saved project
and save the service settings.

2 Re-start the Orbit MapView service.

3 Open the top level screen and enter Run Mode.
The Monitor by Exception widget now shows the status of the monitored items.

The on-screen appearance of the project is shown below for various Monitor by Exception
widget settings etc.

All MbyE Icons Shown

All MbyE icons are shown on the widget by setting:

+ Widget property ‘Extended Style > Sort/Filter Options > Hide Below State’=0
Icon arrangement determined by:

+ Primary Sort Order = Priority

+ Secondary Sort Order = Date (Newest First)

MbyE Icons

b) Monitored summary status shown

Fig. 9-17: Monitor by Exception Widget Showing all MbyE Icons

Hiding Some MbyE Icons

All MbyE icons are shown on the widget by setting:

« Widget property ‘Extended Style > Sort/Filter Options > Hide Below State’= 10
This hides icons with overview state of below 10. This includes ‘OK’and ‘Masked’ state
values.

Icon arrangement determined by:
+ Primary Sort Order = Priority
- Secondary Sort Order = Date (Newest First)

See Figure 9-18.

299

Server-side Processing Examples
Example - Monitoring by Exception

a) All monitored devices OK, all icons hidden

13:33:
b) Monitored summary status shown

Fig. 9-18: Monitor by Exception Widget Hiding Some MbyE Icons

All MbyE icons may be shown on the widget by setting:
+ Widget property ‘Extended Style > Sort/Filter Options > Hide Below State’= 80

This hides icons with overview state below 80 (includes ‘Warning;, ‘OK’ and ‘Masked' state
values).

Fig. 9-19: Monitor by Exception Widget Hiding all but MbyE Icons with Fail State

MbyE Icons Shown in State Order

All MbyE icons are shown on the widget by setting:

+ Widget property ‘Extended Style > Sort/Filter Options > Hide Below State’=0
Icon arrangement determined by:

« Primary Sort Order = State

+ Secondary Sort Order = Priority

Fig. 9-20: Monitor by Exception Widget - MbyE Icons in Alarm State Order

300

Orbit MapView
User Manual

172 |
[=lta
_ My Delta Channel
Hiding ‘OK states (‘Extended Style > Sort/Filter Options > Hide Below State’=10)

Fig. 9-21: Monitor by Exception Widget - MbyE Icons in State Order and Hiding Below 10

Exclude MbyE Icons from Screen Link State

If required, an MbyE icon item may be excluded from contributing to the overall ‘Link State’ of
the screen by setting its corresponding ‘Use Link State’ setting to ‘False’ See Figure 9-22.

B Orbit (L2 [

Priority = Address Title Display Image
1000:D0:01 Dev 1 (Device)
/schematics
1000:E0:02 Dev 2 (Log Fi... [images/My_XYZ.png /schematics;
1000:E0:03 My Delta Cha... [images/My_Delta.png

1000:D0:09 My Sport Cha... [images/My Sport.png

Variables Duplicate Al Delete

Cancel

Fig. 9-22: Excluding RollCall Address 1000:E0:03 from the Overall Screen Link State

Show MbyE Icons Depending on Their State

Icons can be shown according to their ‘State’ value by using the ‘Hide Below State’ MbyE
widget property.
(l.e.in the Properties box for the MbyE widget, the property ‘Extended Style > Sort/Filter
Options > Hide Below State’ Note: State value is in the range 0 to 100, see State Value 0 to 100,
on page 17.)
For example:
+ Set ‘Hide Below State’=48
Icons with "Warning' or ‘Fail’ status are shown.
+ Set ‘Hide Below State’=98
Icons with ‘Fail’ status are shown.

All MbyE icons may be shown on the MbyE widget by setting ‘Hide Below State’=0

301

Server-side Processing Examples
Example - Monitoring the Rate of Change of a Value

Example - Monitoring the Rate of Change of a Value

Rate of Change alarm: 770

One Orbit Service is the Orbit Monitoring service. It can be configured to generate alarm
messages from Log Field values in device log messages; the rate of change of a value is
monitored. This is useful in cases where a small increase in a value is to be allowed, yet a large
increase over a period of time requires a warning or an error to be generated.

For example, a CRC error count on a SDI video input: Normal connecting and disconnecting of
a video input connector may result in some CRC messages. The user may wish to ignore these.
But a large increase in a CRC error count over a given time would require some alarm to be
generated.

Note: The ‘Rate of Change’ (RoC) function monitors the overall changein a
value over a period (sample interval). The overall change is compared against
thresholds to determine the resulting state (OK, Warning, or Error).

Configuring the Orbit Monitoring Service

302

1 Open the Orbit Services manager and go to the ‘Monitoring Service’ page.
2 Open the ‘Headers’ page.

3 Click Edit State Rules,
and click on the Rate of Change Rules tab.

4 Set up a rule for the Orbit Monitoring system. (See Figure 9-23 on page 303.)
5 Click Save Changes.

Orbit MapView
User Manual

Edit states:
+ Select State - Selects the rule to edit, or creates a new rule.
+ Delete - Deletes the selected rule group (on ‘Save Changes’).
- Name - The name of the rule to be edited.
- Sample Interval - Defines the period over which the overall change in a value is calculated.

« Error threshold - Overall change threshold for error condition.
If the overall change in a log field value (over the duration of the Sample Interval)
is greater than Error Threshold, an error alarm state results.

« Warning threshold - Overall change threshold for warning condition.
If the overall change in a log field value (over the duration of the Sample Interval)
is greater than Warning Threshold, a warning alarm state results.

+ (Note: Value changes below this threshold will be treated as ‘OK’)

[Semice Config x +
& C @ 127.0.0.1:8080/monitoringnodeXbeaders# * 6 :
Orbit Service Manager

Edit States
System

Headers String Rules Numeric Rules Rate Of Change Rules
Categories

+ Save changes

Select State: CRC_ERR v @ Delete

Header ber State Ack Delay
Name:

GSM

Headers *
INPUT_*_CRC CRC_ERR

Units INPUT_*_CRC CRC_ERR - X Delete I
Sample Interval (seconds): @ 5

1-200f 1189items (&
Error threshold: @ 100.00

Warning threshold: @ 1000

Save Changes = Cancel Changes

Fig. 9-23: Edit a Rate of Change Rule

This has set up a ‘Rate of Change’rule.
To apply this rule to a Log Field:
6 Select the Log Field Header.

7 Select the defined ‘Rate of Change’rule in the ‘Number State’ column. See Figure 9-24 on
page 304.

Note: The Rate of Change rule is only used for numeric Log Field values.
When a Rate of Change rule (RoC) is selected, any string rules are ignored.

303

Server-side Processing Examples
Example - Monitoring the Rate of Change of a Value

Header selected

Note the ‘ROC: prefix

M Service Config x +
& C (@ 127.0.0.1:8080/monitoriignode/headers#
Orbit Service Manager

System

Headers

Categories

+ Savechanges @ Cancelchanges <+ New Header # Edit State Rules

GSM o
Header Title Siring State
AEiED INPUT_*_CRC

Units INPUT_*_CRC Input * CRC

¥ items per page

Fig. 9-24: Select the Rate of Change (ROC) Rules

8 Click Save Changes.

9 Stop and then restart the Monitoring service.

Number Staie

ROC:CRC _ERR v

Default
ROC: CRC_ERR

SRR X

Ack Delay

X Delete

1-200f 1183 ftems (&

The Monitoring service will now monitor the defined Log Header (in this example,
INPUT_*_CRC) over time to see if it any value changes exceed the ‘Warning Threshold’ or ‘Error

Threshold'.

The 'OK; ‘Warning’ or ‘Error’ state condition generated actively changes to reflect the latest Log

Field value change. The alarm is not latched.

304

Orbit MapView
User Manual

Monitoring Rate of Change with MapView

To use this ‘Rate of Change’ state information, from the services, in an Orbit MapView screen:

« Use an Alarm Behaviour to monitor a Log Field’s ‘Rate of Change’alarm state.
(The angle bracket syntax also works, < >.)

Build the Screen

In the MapView example below:
- adevice at RollCall address 1000:C0:01 is generating INPUT_1_CRC Log messages with a
changing value; and
« the Orbit Monitoring Service is monitoring the ‘Rate of Change’the monitored value.

Label widgets show the various
Log Field values
and Rate of Change (RoC) state

Angle Bracket (< >) for INPUT_1_crC: <1000:C0:01,INPUT_1_CRC>

INPUT_1_CRC:| INPUT_1_CRC Log Field Value
Rate of Change alarm: +ROC Alarm Value

Log Field Behaviou

Behaviours

Al B Alarm Behaviou

Alarm
Alarm Acknowledgemen

Alarm Mas
Audio Leve
Audio Loudness
Audio Ph

Edit RO Log Field Input CRC

Edit Alarm INPUT CRC
Name RO Log Field Input CRC
RollCall Address 1000:C

Headers INPUT_1_CRC

Write Mode Read Only

Name Alarm INPUT
Mode

RollCall Address

Header INPUT_1_CRC

Report Status v True

Us hed Stat False
Configuration <Click To Edit>

Fig. 9-25: Log Field and Alarm Behaviours

305

Server-side Processing Examples
Example - Monitoring the Rate of Change of a Value

Exercising the Screen

Running this screen while the INPUT_1_CRC Log Field values are changing produces the
behavior shown in Figure 9-26.

Rate Of Change Rules

Select State: CRC_ERR v @ Delete

Name:

CRC_ERR
Sample Interval (seconds): @ 5
Error threshold: @ 100.00

Warning threshold: @ 10.00

a) Recap of the ‘Rate of Change’rule set up.

Angle Bracket (< >) for INPUT_1_CRC: 900

INPUT_1_CRC: 900

Rate of Change alarm: f

b) Alarm state = OK, value = 1.

Angle Bracket (< >) for INPUT_1_CRC:

INPUT_1_CRC: 930

Rate of Change alarm: 5/}

¢) Alarm state = Warning, value = 50. Monitored value change by 30.

Angle Bracket (< >) for INPUT_1_CRC: 935

INPUT_1_CRC: 935

Rate of Change alarm: f

d) Alarm state = OK, value = 1. Monitored value change by 5.

Angle Bracket (< >) for INPUT_1_CRC: 1145

INPUT_1_CRC: 1145

Rate of Change alarm: 70}

e) Alarm state = Error, value = 100. Monitored value change by 210.

Fig. 9-26: Monitored Log Field Value and Rate of Change Alarm state value

306

Orbit MapView
User Manual

Example - ‘Network View’ User Folder and Virtual Alarms

Network View

User
My_User_Folder (1000:00:

User Folders in the Network View pane may also be used to generate an alarm for everything
contained in the folder; this is a virtual alarm. A User Folder may contain a mixture of Grass
Valley devices with differing alarm types (Densité/IQ). The virtual alarm is a hybrid alarm
containing the aggregate state (worst case) of all the devices.

The virtual alarm is generated server-side by the Orbit MapView service. The virtual alarm is
defined and configured in Orbit MapView at the Network View pane. When the alarm has
been defined, the Orbit MapView project must be saved and be accessible by the Orbit
MapView service.

The virtual alarm is associated with a (RollCall) address and is thus available to a running Orbit
MapView project.

The action of virtual alarms is shown below with an example. The example has the Orbit client
application connected to some devices.

Prepare a User Folder
In the Network View pane:
1 Right-click on the User item and select ‘Create Folder'.
This creates a User Folder.
2 Right-click on the user folder and select ‘Assign Address.
3 Enter an unused RollCall address for this folder to use.

Network View

W User Address assigned
My_User_Folder (1000:D0:F1)

RoliCal

=00
#® Monitoring Service 0000:FF:00

Fig. 9-27: User Folder Assigned a RollCall Address

Note: The Orbit MapView service only calculates ‘state’ for user folders
with an address assigned.

307

Server-side Processing Examples
Example - ‘Network View' User Folder and Virtual Alarms

4 Expand the Network View pane to show the connected devices.

Metwork View

W User
My_User_Folder (1000:D0:F1)
cal
Virtual Node 00
irtual Node 1000:D0:00 Connected devices
1

Fig. 9-28: Expanded Network View

5 To add devices,
drag and drop devices onto the newly-created user folder.

Metwork View

W User
My_User_Folder (1000:00:F1) Devices in user folder

@ Monitoring Service 0000:FF:00

Fig. 9-29: Devices in User Folder

Note: User folders may contain sub-folders which contain devices, or
further sub-folders.

Note: For common alarms which are used in more than one user folder,
create a user sub-folder and drag/drop that into user folders where it is used.
(For sub-folders, Orbit MapView service uses the calculated state of the sub-
folder rather than re-calculating state from the sub-folder contents.)

308

Orbit MapView
User Manual

W User
W My_User_Folder (10
g
g

Devices in user sub-folder

Fig. 9-30: Devices in User Folder with a Sub-Folder

6 Save the project.

Exercise the User Folder

Using the Orbit Service Manager:
1 Set the Orbit MapView service to point at the Orbit MapView project.
2 (Re-)Start the Orbit MapView service.

In the Orbit client window:
3 Run the Orbit MapView project. (Click Run Mode in the main tool bar.)

The Network View shows the state of connected devices and reflects the state of each user
folder (virtual alarm) calculated by the Orbit MapView service. See Figure 9-31.

The log fields published by the Orbit MapView service for user folders can be seen in the
‘Details’ windows for each folder.

[’H Details 1000:D0:F1 - My_User_Folder

Fiter: @ Header O Value

Value

7

Right-click and select ‘Details

User folder state shown
(virtual alarm)

Network View

Devices state shown

b-fold =5 1|:||:||- 06 100 06
User su -folder state RolCal Overall state of sub-folder for 1000:D0:F2
shown (virtual alarm) Vitual Node 0000:01:

rtual M 000: 0 -
: B Details 1000:D0:F2 - My,_Sub-folder R

Sort by . -

Fig. 9-31: Virtual Alarm Shown in Network View

309

Server-side Processing Examples
Example - ‘Network View' User Folder and Virtual Alarms

4 When devices send out ‘warning’or ‘fail’ state log messages, the device state is
correspondingly shown in the user folder.

Sub-folder states are reflected in their parent folder’s state. (Alarms ‘ripple upwards’.)
See Figure 9-32.

ﬂ Details 1000:D0:F1 - My _User_Folder ? 22

Sort by ~ Filter: @ Header O Value

Header Value

Network View
Virtual alarm shows worst

state of items within user
folder

{ User
My_User_Folder (1
(01 1000:D0:0

L%

Virtual alarm shows
worst state within sub-
folder

Overall state of sub-folder ‘My_Sub-folder’

Rollcal

irtual Node 0000:01:0 BB Details 1000:D0:F2 - My_Sub-folder Pl o=
Virtual Node 1 00

Sort by ~ Fit)er: @ Header O Value

Header

Fig. 9-32: Virtual Alarm with Device Warning and Failure States

310

Orbit MapView
User Manual

Masking Alarms from the Network View Pane

Masking the alarms we can see the state of the User Folder is updated.

To mask an alarm:

- Right-click on an item in a User Folder and select ‘Mask’.
The following masking options are available:

- Mask Unit.

- Mask Until Green.

- Mask Until Time.

W User

My_User_Folder (1000:00:F1)

My_Sub-folder (1000:D0:F2)

1000:D0:05 1000

Details

Mask Mask Unit

Filter Mask Unit Until Green
Unit Info Mask Unit Until Time
Copy Address

Remove Item

Fig. 9-33: Mask Right-click Menu Item

Table 9-1: Masking Right-click menu Items

Property Description

Mask Unit / Toggle control.

Unmask Unit Select to exclude (mask) or include (unmask) the device from the
user folder Virtual Alarm calculation.

Mask Unit Until Green | Select to exclude the device from the user folder Virtual Alarm
calculation until the unit has an OK state. Once a device OK state is
achieved, the device is included into the calculation.

Mask Unit Until Time | Select to exclude the device from the user folder Virtual Alarm

calculation for a period of time.

Select the required pre-set period from the panel shown:

1 Min 5 Mins 20 Mins

1 Hour 24 Hours

Once the time period has elapsed, the device alarms are monitored
once more by the virtual alarm mechanism.

Note: The masking time periods are set up in Orbit via ‘Tools >
Options > Monitoring' in the ‘Masking' tab

311

Server-side Processing Examples
Example - ‘Network View’ User Folder and Virtual Alarms

Assigned RollCall address

Metwork View

W User

My_User_Folder (1000:EQ:F0)
01 01

a) User Folder showing Summary Fail Alarm

Metwork View

W User
W My User_Folder (: Mask alarm

1000:D0:03 1000:D0:03
b) User Folder showing Summary Warning Alarm

MNetwork View

W User

My_User_Folder (1000:E0:FD)
[F 1000:D0:01 10 01

Mask alarms
[EE 1000

¢) User Folder showing Summary OK Alarm

Fig. 9-34: Masking Alarms in User Folder:
a) ASummary Fail Virtual Alarm.
b) A Summary Warning Virtual Alarm.
¢) A Summary OK state.

Inverting Alarms

Inverting sets ‘Warning’and ‘Failure’ alarm states temporarily to an ‘OK’ state. The state of the
User Folder is updated.

312

Orbit MapView
User Manual

Filtering Alarms

Log Field headers may be included or excluded in the Virtual Alarm calculation that the Orbit
MapView service does. This is done with Filters on items within a User Folder.

Use Filters to:
« just use a list of Log Headers (include); or
« exclude a list of Log Headers.
To filter items in a User Folder:
« Right-click on a User Folder item and select ‘Filter":

Assigned RollCall address to

User Folder
W User

My_User_Folder (1000:D0:F1)

My_Sub-folder (1000:D0:FZ)

1000:00:05 1000z Details

Mask

Fitter Headers
Unit Info Mode
Copy Address

Remove Item

Fig. 9-35: Filter Items within a User Folder - Right-click Menu Item

Table 9-2: Masking Right-click menu Items
Property Description
Headers Select this to build a list of LOG_HEADERS for the user folder item.
To add to the list:
« Select the header item and click '>>".

The header appears in the right-hand side list.
To remove an item from the list:
« Selectitin the list and click ‘Delete Selected'.

MY_OTHER_HEADER

Cancel

313

Server-side Processing Examples
Example - ‘Network View' User Folder and Virtual Alarms

Table 9-2: Masking Right-click menu Items (continued)

Property Description

Filtering that is applied to a User Folder item is indicated in the
Network View. Items are shown with an asterisk (¥) appended to
their name when a filter is applied.

My_Sub-folder (1000:00:F2)
1000:D0:05 1000:D0:05 *

g 1000:D0:06 1000:D0:06

Right-click on a User Folder item and select ‘Unit Info’ to show a
‘Details’ dialog showing some information:

B Details: 1000:00:05 (2 S|
GroupBox

Name
Address:

Services: Alarm

fitter_inclusive false

fitter MY_OTHER_HEADER

Mode Select this to exclude or include the listed LOG_HEADERS.

Options:
+ Excluded - Log headers in the list (for the user folder item) are
excluded from the Virtual Alarm calculation.

+ Included - Log headers in the list are the only ones (from the
user folder item) used in Virtual Alarm calculation.

B Fitter Mode L2 S|

Should the headers be included or excduded from the state calculation?

Excluded

Cancel

The filtering mode applied to a user folder item is indicated:
« Right-click on the user folder item and select ‘Unit Info”:

« With filter_inclusive = ‘false, then mode is ‘Excluded"

« With filter_inclusive = ‘true; then mode is ‘Included’

Filtering at Folder Level
Filtering can be applied at device-level or at user (sub-)folder-level.

When filtering is used at folder level, then only alarms of devices within that folder will be
available for selection for filtering.

314

10 Custom Logic

Summary

Custom Logic

Introduction to Custom Logic page 316

Custom Logic File page 317
Create LOGICFile ettt e e e e et e ie e page 317
Configure Custom Logic File Input(s) and an Output...............ccceeeieeeinnnn. page 318

Example - Custom Text Processing (Trim Text, Convert to UPPERCASE)........cccueeoveerneenenn. page 320
Prelimingries oo ee e et ettt et ittt page 320
Build the Custom LOGICFile.uuue ettt ieeeaenns page 320
Using Custom LOGICON G SCreeN. ... vttt ettt ie e e eieenaneens page 322
Exercising the CUStOM LOGIC. vne et ittt e ittt page 324

Example - Pass Variables to Custom Logic (Prefix a Text String) ... page 325
Prepare a Custom Logic File with Variables................c.cccovviiiiiiiiniiinnan. page 325
Using a Custom Logic File with Variablesc.cccoviiiiiiiiniiiiieinn.. page 327
Exercise the Custom Logic File with Variables................cccccoiiiiiiiiinna.. page 328

Other Custom Logic page 330
Custom Logic With NO ‘OULPULottt e page 330
Custom Logic With NOINDUL. e et eas page 330
Custom Logic with No Inputsand No OQutputcceeiiiiieiieiiiinnnennnn. page 330

315

Custom Logic
Introduction to Custom Logic

Introduction to Custom Logic

Custom Logic allows the functionality, or logic, that is defined with Behaviours/Bindings to be
captured in an Orbit ‘logic file’ for re-use. Custom Logic may be thought of as a function or a
method. One or more Behaviours and/or Bindings may be used in ‘logic files’ And there can
optionally be:

+ zero, one or more input arguments; and

- zero or one output values.

User-defined functionality can be captured once and re-used many times in screens or in Orbit
global files. Figure 10-1 shows example functionality that can be encapsulated into a ‘logic file'

Inputs: Custom Functionality: Output:
Input values, Intermediate values, Output values,
Local Value Local Value Behaviours (internal) Local Value
Behaviours (inputs) Behaviour (output)

Bindings defining the Custom Logic functionality

Fig. 10-1: Functionality for Encapsulated into Custom Logic

Advantages of using Custom Logic:
« Wraps up a complex set of Behaviours/Bindings into a single file which can be re-used.
« Keeps all maintenance in one place.
+ Avoids duplication across and inside screens and other files.

« Can be configured using Orbit variables.
(Variables may be defined inside the ‘logic file’and overridden when the Custom Logic is
used.)

For example, a text string may be extracted from a Log Field and then made lower case; this
requires the use of two String Bindings - which would be arduous to repeat numerous times.
With Custom Logic, this string processing is defined once and then configured for use with
multiple Log Field value inputs.

316

Orbit MapView

User Manual

Custom Logic File

Create Logic File

To create a new ‘logic file) in the Project View of the Orbit MapView project:
1 Right-click on the project name and select ‘New Folder. Name the folder ‘logic’.
2 Right-click on the project name and select ‘New File'

B My_Custom-Bind (*)

File Edit Project View Tools Window RollCall iContr
+]

Project

My_Custom-Bind
l components
panels @ MNew Folder

o New File

resources Close Project
screens
themes

configuration.prj

Fig. 10-2: Right-click and Select ‘New File’

3 Browse to the new ‘logic’ folder and enter a name for the new logic file (‘My_Logic-File’in

this example). See Figure 10-3.

I New File (2] = |

File Type

o i ° °

Component Empty Tile Global Network File Screen

° ® (l (l ®

System Alarms Text File Theme File Video Tile Video Tile Wall File
Full Screen 1/4 Screen

XY Panel

Description

A logic file contains a re-usable function made up of behaviours and bindings.

Details

Name:

LocatioR

Fig. 10-3: Creating a New Custom Logic File

4 Click OK.

317

Custom Logic
Custom Logic File

The new file is opened in a Behaviour/Bindings graphic editor. See Figure 10-4.

‘ My_Custom-Bind

File Edit Project View Tools Window RollCall iControl Control and Monitoring Help
(+]
Project <| My_Logic-File.logic @

Behaviours

Bindinas

Logical
Mapped

Logged in: admin

Fig. 10-4: Behaviour/Binding Graphic Editor

An (empty) Custom Logic file has been created.

Configure Custom Logic File Input(s) and an Output

Custom Logic files may have zero or more input values, and zero or one output value. An input
or output is defined using a Local Value Behaviour. A Local Value Behaviour can also act as an
internal node of the Custom Logic, holding an interim value.

B My Custom-Bind =NECIN X |

File Edit Project View Tools Window RollCall jControl Control and Monitoring Help

(]

Project X My_Logic-File.logic (*) @

My_Custom-Bind
l logic

o My_Logic-File.logic All
l components

Alarm

Alarm Mask
Audio Level
Audio Loudr

Edit Local Value
Name Local Value
Initial Value
& RollCall Scope Internal
Input
Output

Fig. 10-5: Local Value Behaviour Edit Properties

318

Orbit MapView
User Manual

After a Local Value Behaviour is added, its properties include a ‘Scope’ property. The Local
Value Behaviour holds a value whose scope in the Custom Logic is set by the ‘Scope’ property:

+ Internal - holds a value which is internal.
+ Input - holds a value which is an input.
+ Output - holds a value which the output.

Note: Do not delete and re-create inputs or outputs.

Orbit identifies each input and output using an internal ID. Therefore, the
user is free to change the ‘Name’ property.

However, if these are deleted and re-created, then the ID would change.

319

Custom Logic
Example - Custom Text Processing (Trim Text, Convert to UPPERCASE)

Example - Custom Text Processing (Trim Text, Convert to UPPERCASE)

Test Stimulus text string: Custom Binding result:

[Spaces beforefaft |

| Spaces before/aft | |SPACES BEFORE/AFT|

Preliminaries
1 Create a Orbit MapView project.
2 Create a new (empty) screen (.schx file).
3 Create a new (empty) Custom Logic file (.logic).

Project

My_Custom-Binding-Example
B components
b logic

db.users

Fig. 10-6: Example Project View with New Screen and Custom Logic Files

Build the Custom Logic File
1 Double-click on the logic file item in the Project View.
The Custom Logic file is opened in the editor.

2 Add a Local Value Behaviour.

and set ‘Name’='My Input’and set ‘Scope’="Input’.
3 Add a Local Value Behaviour.

and set ‘Name’='My Output’and set ‘Scope’="Output.
4 Add a Local Value Behaviour.

and set ‘Name’='My Internal’ and set ‘Scope’ ="Internal’.

5 Add a String Op Binding
and set:

+ ‘Source’='My Input’ Local Value Behaviour;
« 'Function’="Trim’;
+ 'Target’='My Internal’ Local Value Behaviour;

6 Add a String Op Binding
and set:

+ 'Source’='My Internal’ Local Value Behaviour;

« ‘Function’="Uppercase’;

- ‘Target’=‘My Output’ Local Value Behaviour;
7 Click Save.

A functional Custom Logic file has been created. See Figure 10-7.

320

Orbit MapView
User Manual

Input

My_StringOp.logic @
Behaviours

All
Alarm
Alarm M

Command Line

Densite

Display Details
v Alarm

GSM Text

Link

Load Control Screen
Local Timer

Local Value

Lock

Bindings

Custom Logic functionality

Edit String Op UPPER CASE

Commeon Properties

Name: String Op UPPER CASE

Source

Input: My Internal

Function

Function: Uppercase

arch Term:

Start Index:

Length:

Fig. 10-7: Created Custom Logic File

Output

Target

Result: My Output

The Custom Logic file can be used like a Binding in a screen schematic or in an Orbit global file,
including being used within another logic file.

321

Custom Logic
Example - Custom Text Processing (Trim Text, Convert to UPPERCASE)

Using Custom Logic on a Screen
The Custom Logic file created above is used on an Orbit MapView screen. This example creates
a test screen to demonstrate the use of a Custom Logic file:
1 Create a screen schematic.

2 Add a Text Edit widget, select it and
click the Edit Behaviours button to show the ‘Behaviour/Bindings’ graphic editor.

3 Add a Local Value Behaviour.

Orbit connects a Local Value Behaviour to the Text Edit widget's value via a Direct
Binding. The Behaviour will hold the value of the Text Edit widget.

4 Select the screen background.
5 Drag and drop the Custom Logic file onto the ‘Behaviour/Bindings’ graphic editor.
6 Double-click on the Custom Logic in the graphic editor to edit its properties:
+ Set‘Input’to be the Text Edit widget's Local Value Behaviour.
« Set ‘Output’to be a new Local Value Behaviour.
See Figure 10-8.
7 Click Close.

Instance of Custom Logic

Text Edit widget’s Local Value Behaviour New Local Value Behaviour

Path to the Custom Logic file
Edit My_StringOp.logic
Common Properties
Mame: My_StringOp.logic
Source:

flogic/My_StringOp.logic Browse Reload

Inputs Output Variables

Fig. 10-8: Custom Logic Settings

8 Add a Label widget to the screen, select it and add a Direct Binding.
9 Double-click on the Direct Binding to edit its properties.
+ Set ‘Source Behaviour'= Local Value Behaviour holding the Custom Binding result.

- Set ‘Format String’ = | %s|
(This will print a string surrounded by vertical bar characters, | |.)

See Figure 10-9.

322

Orbit MapView
User Manual

Edit Direct Binding

Common Properties
Name: Direct Binding

Source Behaviouri(Custom Result

Mode: Read/Write

Format StI

Target: ® Widget O Behaviour

Fig. 10-9: Direct Binding Edit Properties

10 Click Close.

This has created a Label to show the resulting text string from the Custom Binding. The text
string will be shown within the vertical bar characters,| |, specified in the format string.

11 Add a further Label widget, in a similar way, to show the test stimulus text (i.e. the value of
the Text Edit widget).

12 Click Close.
13 Click Save. Click Save Project.
The resulting screen (see Figure 10-10) can be used to exercise the Custom Logic.

Enter text as a test stimulus into the Text Edit widget

Label widget showing value of the Text Edit widget Label widget showing the Custom Logic result
Test Stimulus text string: Custom Binding result:
| |
Stimulus text string (from Text Edit widget) Resulting text string

Behaviours

All -
Alarm

Alarm Acknowledgement
Alarm Ma

Audio Lev

Audio Loudness

Audio Phase

Custom Logic under test
Fig. 10-10: Test Screen for Custom Logic

323

Custom Logic
Example - Custom Text Processing (Trim Text, Convert to UPPERCASE)

Exercising the Custom Logic
1 Set the screen into Run Mode.
2 Enter a string value into the Text Edit widget and view the resulting text.

The resulting text will be converted to upper case and have any initial or final space
characters trimmed.

My_Custom-Logic-Test-2.5chx €

Test Stimulus text string: Custom Binding result:

[Spaces before/aft |

| Spaces beforefaft | [SPACES BEFORE/AFT|

Fig. 10-11: Custom Logic Exercising

This example shows Custom Logic being passed a value via a Local Value Behaviour.

324

Orbit MapView
User Manual

Example - Pass Variables to Custom Logic (Prefix a Text String)

Test Stimulus text string: Custom Logic result:

[Stimulus text string |

|Stimu|u5 text 5t|'1|'|g| STIMULUS TEXT STRING|
MY-PREFIX:STIMULUS TEXT STRING

The above example (Example - Custom Text Processing (Trim Text, Convert to UPPERCASE), on
page 320) passes an argument to Custom Logic by using a Local Value Behaviour, and shows
how value can be passed into or out of Custom Logic.

Custom Logic may also be configured by using variables which can be set when a Custom
Logic file is used. This is described in the example below:

Prepare a Custom Logic File with Variables

This example prefixes a text string with some text. A ‘prefixing’ Custom Logic file is generated
where the prefix text can be set. This adds an additional step to the above example, Example -
Custom Text Processing (Trim Text, Convert to UPPERCASE), on page 320.

1 Create a Custom Logic file, ‘My_Prefixing'.

2 Right-click in the background of the Custom Logic graphic editor
and select ‘{...} Variables.

3 In the Variables dialog,
create a new variable called ‘My Prefix’
and set its value to **My Prefix**'. See Figure 10-12.

4 Click OK.

{~} Variables ® 53_|

Name ~ Type Value
My Prefix String **My Prefix™*

Filter: Newr New(N) Delete

0K Cancel Apply

IL-'ig. 10-12: Variables Dialog

5 Add a Local Value Behaviour, ‘Local Value In’, with ‘Scope’=‘Input’.
6 Add a Local Value Behaviour, ‘Local Value Out’, with ‘Scope’='Output’.

7 Add a Local Value Behaviour, ‘Local Value Prefix’, with ‘Scope’ ="Internal.
And set its ‘Initial Value'="{My Prefix}".
(Using the curly braces, {}, specifies the value of the variable ‘My Prefix’),
See Figure 10-13.

325

Custom Logic
Example - Pass Variables to Custom Logic (Prefix a Text String)

Edit Local Value Prefix

Initial Value = {My Prefix}

Name
Initial Value
Scope

Fig. 10-13: Prefixing Custom Logic

Local Value Prefix
{My Prefix}
Internal

8 Add a Combine Binding and configure it to concatenate two text strings with a ‘colon’
character. See Figure 10-14.

My_Prefixing.logic €

Alarm
Alarm Mask
Audio Level
Audio Loudnes:
Audio Phas

2 Window

Input text strings

Load Control S
Local Timer
s ., Local Value
Format String’ selected i
Log Field
Y % Contre
RollCall Timer

Output string format
specified:

%1:%?2

Edit Combine

Common Properties

Name: Combine

Behaviour Behaviour Value

1 Local Value Prefix Value
Remaove
Local Value In Value

Up

Down

(O Separator ® Format String

Join Mode:
Separator/Format: %1:9

Target: Local Value Out

Output the text string to a new Local Value Behaviour

Fig. 10-14: Custom Logic

9 Click Save.

The logic file is complete and the prefixing Custom Logic is now ready for use.

326

Orbit MapView
User Manual

Using a Custom Logic File with Variables
This example extends the example of Example - Custom Text Processing (Trim Text, Convert to
UPPERCASE), on page 320 above:

1 Open the screen of Example - Custom Text Processing (Trim Text, Convert to UPPERCASE),
on page 320 above,
or make a copy of the screen for use here.
(To make a copy:

« select the file in the Project View; right-click on it;
+ select ‘Copy’; and
- enter a new file name.)

2 Select the background of the screen
and open the ‘Behaviour/Bindings’ graphic editor.

3 Drag and drop the new ‘prefixing Custom Logic file’ onto the graphic editor.
And double-click on it to edit its properties.
Set:

+ ‘Input’to be the Local Value Behaviour holding the result of the earlier example.
« Set the ‘Output’to be a new Local Value Behaviour, call it ‘Prefixed Text'.
« Set the variable listed in the ‘Variables' section to be MY-PREFIX" .

The new Custom Logic instance has been configured, see Figure 10-15.

Edit My_Prefixing.logic

Common Properties

Name: My_Prefixing.logid

Source:

[logic/My_Prefixing.logic Browse Reload

Inputs Output Variables

Local Value In: Custom Result Select Local Value Out: Prefived Text Select Variables
My Prefix MY-PREFIX

Input = result of previous Custom Logic Variable ‘My prefix’='MY-PREFIX’

Output = new Local Value Behaviour

Fig. 10-15: Configuring New Custom Logic File with Variables

4 Click Close.
5 Click Save.

6 The ‘Behaviour/Bindings’ graphic editor now shows the previous example connected to
this prefixing Custom Logic, and the result is connected to a Local Value. See Figure 10-
16.

327

Custom Logic
Example - Pass Variables to Custom Logic (Prefix a Text String)

My_Custom_Prefixing.schx €3

Test Stimulus text string: Custom Logic result:

Stimulus text string Unprefixed resulting text string

Prefixed resulting text string

Behaviours

d Caption

mand Line
ite
Display Details
Email
G

Fig. 10-16: Prefixing Custom Logic Instantiated

Custom Logicand
Local Value
Behaviour from
previous example.

Prefixing
Custom Logic

New Local Value
Behaviour holding
the prefixed result

7 Add a Label widget to the screen and connect it to the ‘prefixed text’ Local Value

Behaviour. This will show the final, prefixed result.
8 Click Save. Click Save Project.

The screen is ready for running and testing.

Exercise the Custom Logic File with Variables

1 Enter Run Mode.
2 Exercise the prefixing Custom Logic:

A string value entered into the original Text Edit box is converted to upper case and

trimmed, as before, and is then prefixed with some text.
See Figure 10-17.

My_Custom_Prefixing.schx €

Test Stimulus text string: Custom Logic result:

[Stimulus text string |

Fig. 10-17: Exercising the Prefixing

328

MY-PREFIX:STIMULUS TEXT STRING

Orbit MapView
User Manual

The preset text is currently set to ‘MY-PREFIX; but this can be changed for the specific instance
if the Custom Logic:

3 Enter Design Mode.

4 Select the background of the screen and show the ‘Behavours and Bindings’ graphical
editor.

5 Double-click on the prefixing Custom Logic to change it settings. See Figure 10-18.

Edit My_Prefixing.logic

Common Properties
Name: My_Prefixing.logic
Source:

flogic/My_Prefixing.logic Browse Reload

Inputs Output Variables

Local Value In: n Result Local Value Out: 2d Text
!! Another prefix !

Fig. 10-18: Change Prefix Variable for an Instance of Custom Logic

6 Click Close.

7 Click Save.

8 Enter Run Mode.

9 Exercise the prefixing Custom Logic:

A string value entered into the original Text Edit box is converted to upper case and
trimmed, as before, and is then prefixed with some text.

See Figure 10-19.

My_Custom_Prefixing.schx €%

Test Stimulus text string: Custom Logic result:

[My test stimulus text. |

| My test stimulus text. | |MY TEST STIMULUS TEXT.|

I Another prefix !I:MY TEST STIMULUS TEXT.

Fig. 10-19: Exercising Another Prefix

329

Custom Logic
Other Custom Logic

Other Custom Logic

Custom Logic with No ‘Output’

It is valid to construct Custom Logic which has no ‘output’ This may be required, for example,
to send a message to an external device. (RollCall+ Command Behaviour could be used.)

Custom Logic with No Input

Itis valid to construct Custom Logic which has no inputs. This may be required, for example,
where some action is to be driven off of a local timer, or some other triggering mechanism,
allowing such Custom Logic to operate ‘standalone’.

Custom Logic with No Inputs and No Output

Itis possible to construct Custom Logic which has no inputs and no outputs.

330

11 Channel Monitoring Example

Summary

Channel Monitoring Example

Introduction to Example MapView Project page 332
SCrEEONS . . ettt e e et page 332
SCreens HierarChy...... ... oottt e ettt page 333

Top Level Screen page 334

Channel View Screen page 335
Animated Play-Out Chain.couueeee ittt ettt ie s page 336

Engineering Information Screens page 339
RACKS SCIeen.ttt e e e e e e e ettt iaeans page 339
RACK DEVICES SCrEENttt e et ettt ettt et ieaans page 340
Device Status Information SCreenueuieuieiie et iaeiieninann, page 341

Operation page 342
TOPLOVEL ... e e e e e e e page 342
CRANNEIVIEW . .. e e e e et et et e e ie e page 343

Orbit Channel Monitor

Channel View

Channel 1

Title A

PLAYOUT CHANNEL RETURNS

This chapter presents an example overall Orbit MapView project, which uses some elements of
previous examples presented in this manual. An overview of the finished project is described
and key features noted.

331

Channel Monitoring Example
Introduction to Example MapView Project

Introduction to Example MapView Project

Screens

c) Racks

332

An Orbit MapView project will comprise a hierarchy of several screens. Apart from graphical
widgets, some screens may use components, Custom Logic, image files. And screen ‘behind
the scenes’ functionality is captured in screen schematics and in components using Orbit’s
Behaviours and Bindings.

The presented example project, ‘My_Example’, uses and re-uses the following basic screen
designs, shown in Figure 11-1:

a) Top Level screen.

b) Channel Monitor screen.
c) Racks screen.

d) Rack Devices screen.

e) Device Information screen.

Screens use components where similar graphical on-screen widgets occur and, for each
different component instance, variables are set to differentiate each instance.

Some screens are used more than once and screen instances are differentiated by different
screen variables settings.

Orbit Channel Monitor

CHANMEL RETURNS

Orbit Channel Monitor -

d Rack Devices View
Racks View

d) Rack Devices

-

vice View

e) Device Status Inormation
Fig. 11-1: 'My_Example’ Project Screens

Orbit MapView
User Manual

Screens Hierarchy

The example project’s screen are arranged in a hierarchy: A top level, summary screen shows
overall status of several channels and provides time/date information. Access is provided to
screens for each channel. Additionally, there is access to engineering-level information for
logged-in users with engineering permissions. The screen hierarchy is shown in Figure 11-2.

(Set as Home) .

I
4x Channel View Screen | | Racks Screen

Orbit Channel Monitor

i Channel View

Racks View

6x Rack Devices Screen

CHANNEL RETURNS

Orbit Channel Monitor .Y

Rack Devices View

| | | | | | | | | | | |6x6DeviceStatusInformationfScréen] | | |

Orbit Channel Monitor

ice View

ot Address

Fig. 11-2: ‘My_Example’ Project Screen Hierarchy

333

Channel Monitoring Example
Top Level Screen

Top Level Screen

The top level screen is shown in Figure 11-3.

Banner area (component)

Home button Button to access engineering screens Time/date

Orbit Channel Monitor a

Orbit Channel Monitor

S
My Sport]

Monitoring by exception

Fig. 11-3: Top Level Screen

The top level screen comprises:

« Atop banner area - which is formed as a component and appears on each other screen.
The banner:

+ contains a ‘home’ button to return to the top level screen from any other;
- allows access to engineering screens (‘Racks’ button) for permitted users; and
+ shows the time and date.
« An Exception Monitor widget - which shows the overall status of several channels:
- Each monitored channel is represented by an icon showing a channel logo image.
« Click on an icon to open the ‘channel view’ screen for the corresponding channel.

The ‘Racks’ button links to a ‘racks view’ screen, from which further device information can be
accessed. The button itself uses the ‘Permissions’ widget property to hide the button when a
logged in user does not have engineering permissions.

334

Orbit MapView
User Manual

Channel View Screen

The channel view screen is shown in Figure 11-4.

Banner area
Channel logo image

Channel View

P

y
-

1 Videa Fresse.
Audia Sencs, ChIBCHE || P
Transmission Return

Channel 1

hudioShence, cnl & chz
Cable Return

PLAYOUT CHANNEL RETURNS

‘Now and next’information box Monitoring by exception
(component) (widget)

Fig. 11-4: Channel View Screen

The channel view screen comprises:
+ A banner area.
« A channel logo image.

« An animated play-out chain graphic, showing channel information,
see Animated Play-Out Chain, on page 336.

« ‘Now and Next'information box (formed with a component).
This reads information from an automation play-out device and shows it on screen.
Information includes:

« the name of the current clip being played;
« the time remaining; and
- the name of the next clip.

+ An Exception Monitor widget.

335

Channel Monitoring Example
Channel View Screen

Animated Play-Out Chain

A representation of the channel’s play-out chain is shown, which monitors the chain at various
points (see Figure 11-5). Each monitor point is annotated with live video, audio bars, and status
information and is formed from a component.

The channel play-out chain graphic depicts:
+ ‘Main’and ‘backup’ play-out servers.
« Change-over switch (HCO).
+ Transmission signal.
« Channel returns.
« Line segments showing status and interconnection between monitor points.

Play-out chain monitored at:
(1) Output of ‘main’play-out server.
(2) Output of ‘backup’ play-out server.
(3) Selection of ‘main’or ‘backup’at HCO change-over switch.
(4) Transmission.
(5) Channel reception from:
a) Satellite return.
Monitor point (component) b) Off-Air return.
¢) Cable return.

Channel 4

PLAYOUT

CHANNEL RETURNS

Line segments represent the play-out channel ‘circuit.

Note: When the project is run, the color of each line segment is linked to an alarm
state; the line color then reflects the status of the channel at each point.

Fig. 11-5: Play-Out Chain

336

Orbit MapView
User Manual

Channel Monitor Points

Each channel monitor point is an instance of a ‘channel monitor point’component, designed
for the project and with specific variables set for each component instance on the channel

view screen.

Audio Bars widget Video widget

Video Black
Video Freeze
Audio Silence, Chl & Ch2

Non-latched Latched
Alarm state indicators.

Fig. 11-6: Channel Monitor Point Component

Alarms monitored

Click button to clear
latched alarms

There is an Alarm Behaviour for each alarm being monitored (separate Behaviours for latched
and non-latched) and the alarm state is reflected with rectangular on-screen indicators.

There is a Button widget which clears latched alarms by sending ‘clear’ commands to the Orbit

services when it is clicked.

337

Channel Monitoring Example

Channel View Screen

338

Change-Over Switch

Each play-out server (‘Main’and ‘Backup’) feeds a change-over switch module (HCO). The
module monitors the state of its two video input signals; it passes ‘input 1'and will automatically
switch over to ‘input 2'if it detects an error in its received ‘input 1; and vice versa.

On the screen schematic, the HCO module is represented by a:
- arectangle; and
« agraphic representation of a two-way switch.
An Alarm Behaviour monitors the state of the HCO module itself.

A Log Field Behaviour reads a Log Field header from the HCO module to find out which input
is selected to be passed. This information is used to control the visibility of one or other line-
segments comprising the two-way switch (see Figure 11-7).

HCO: Rectangle shape widget; and two-way switch ‘line drawing’

PLAYOUT

Fig. 11-7: Change Over Switch

Orbit MapView
User Manual

Engineering Information Screens

Racks Screen

The first screen of engineering information summarizes the state of each rack in a system

(Figure 11-8) using Event Bindings (Event Binding, on page 128) and Link Behaviours (Link
Behaviour, on page 174).

The hierarchical structure of this part of the example in this section uses variable files (see
Example - Screen Link States and Screen Re-Use with Variable Files, on page 243).

Orbit Channel Monitor ‘«

Buttons linking to ‘rack devices’ screens

Fig. 11-8: Racks Screen - Access to Rack Devices Screens

339

Channel Monitoring Example
Engineering Information Screens

Rack Devices Screen

The next level of engineering information summarizes the state of each device in a rack (see
Figure 11-9). Similar to the ‘racks view’screen, it uses Event Bindings and Link Behaviours.

Orbit Channel Monitor m

Rack Devices View

Fig. 11-9: Rack Devices Screen - Access to Device Information

340

Orbit MapView
User Manual

Device Status Information Screen

The lowest level of engineering information summarizes the state of a device (see Figure 11-
10). The information is typically laid out in a tabular form. The source of the information is
Alarm and Log Field Behaviours showing various aspects of device status.

+ The hash field syntax (#, #Hash Field# Syntax, on page 164) can be used to quickly shows a
Log Field value in, for example, a Label caption text.

« The angle bracket syntax (< >, <Angle-Bracket> Syntax, on page 166) can be used to flag
‘warning’or ‘failure’ states in, for example, formatted Label captions etc. (see Build a
Device Information Screen (Low-Level), on page 247).

Orbit Channel Monitor ‘

Orbit Device View

Device Name RollCall Address

Information (6141:10:09)

Fig. 11-10: Device Information Screen - Showing All Status Information for a Device

341

Channel Monitoring Example

Operation

Operation

Top Level

342

To run the project, open the Top level screen and enter ‘Run Mode'.

Orbit Channel Monitor &

Orbit Channel Monitor

D oo
Delta TV XYZ TV My News[My Sport|

a) Normal Operation

Orbit Channel Monitor "‘

Orbit Channel Monitor

XYZ TV

b) Failure on One Channel

Fig. 11-11: Top Level: a) Normal Operation; b) Failure on One Channel.

Orbit MapView
User Manual

Channel View
Normal Operation, All OK

Orbit Channel Monitor

it_Projects/CaM Frojects/My_CuM_Example/sch

Channel View X

T

[-lta

Transmission

Channel 1

Current Clip: Title A
Time Remaining: Time

Next Clip: Title B

Cable Return

PLAYOUT CHANNEL RETURNS

Fig. 11-12: Channel View

Channel Play-Out Failure

If a failure occurs at the main play-out server, then:
1 An alarm ‘Failure’ condition is reported by the server.
2 The ‘failure’ condition is detected in the Orbit screen is shown:
« in the alarm state indicators in the ‘Channel Monitor Point’ component; and
« on the corresponding line segments.
(See Figure 11-13a.)

3 The physical HCO module detects an error at its input and switches over to using its second
input.

4 The physical HCO's ‘input selected’status is read by the Orbit project which sets the state
of the HCO two-way switch graphic accordingly. (See Figure 11-13b.)

343

Channel Monitoring Example

Operation

Video black alarm

Click to clear
latched alarm

344

Orbit Channel Monitor

Channel View

Channel 1

CurrentClip: TitleA
Time Remaining: Time
Next Clip: TitleB.

PLAYOUT

a) Failure on main play-out server

Orbit Channel Monitor

Channel View

Channel 1

Current Clip: ~ TitleA
Time Remaining: Time
Next Clip: Title B

PLAYOUT

b) HCO switches over to backup play-out server

Fig. 11-13: Channel View:

a) Main Payout server Fails.

CHANNEL RETURNS

b) Channel Play-out graphic shows Backup Play-out Server being Used.

When the failure condition is cleared, the main play-out server output is used by the HCO and
the Orbit screen reverts to its ‘normal’ view.

5 Click the button on the corresponding ‘channel monitor point’component to clear any

latched alarm failure state.

6 Click the ‘Home' button to go to the top level screen.

A Design Tips and Shortcuts

Summary

Design Tips and Shortcuts

DESIGN TIPS ceereereurenreeenreresesisseseasesesesssssstasessesssssstaseassssssssesstassassssssesstassassssssastusssssssssaseassssssssinne page 346
DeSign STrUCLUIEo e et ettt et aeans page 346
Manage Access CONEIOlt e iaeees page 346
Project STTUCEUIE . ..« v ettt et e e e e et et et e e ieeieaaeans page 346
NAMING ot e ettt e e e e e e et e e e eaenns page 346
Variables e page 346
Variable File e e ettt page 347
(@000 0 1=1 11 7S page 347
CUSTOM LOGIC . .« e et page 347
EXEICISING. .« . et e e page 347
=15 T e page 349

Design Shortcuts page 350
CUrly Bracket {} SYNtaX.oou ettt ettt ie e ieens page 350
Hash Field # # SYNtaxXoueee ettt ettt it ie i eens page 350
ANngle Bracket < > SYNtaxoeuueeenieeii e page 350
Copy a Device Address to Clipboard..............coeuiiiiiiiiiiiiiieiinneinn page 350
Copy aDevice Parameterseuuune et eaeeens page 350
Copy a Device Log Field to Clipboard..............couiiiiuiiiiiiiiiinniiinieiinns page 351
Drag/Drop Device onto Tally Lamp Widget..............ccovviiiiiiiiiiiiniiinna.. page 351
Drag/Drop Device onto Label Widgetouuiiiiiiiiiiiiiiiiiannnnnn. page 353

SNOIECUL KEYSEIOKES .vevvveeesrvrseersiersrssisssissens page 354

Some useful design tips and shortcuts are presented below for use when designing Orbit
MapView screens.

345

Design Tips and Shortcuts

Design Tips

Design Tips

Design Structure

As with any design, careful planning and a structured approach work the best. A design can be
got working more easily and subsequently modified as required more simply with a thought-
through structured design.

Break down functionality into easily-testable blocks and sub-blocks.

Manage Access Control

Implement ‘users’ for projects with appropriate permissions.
Keep records of master ‘admin’ passwords and user names.

Keep master copies of an Orbit project.

Project Structure

Naming

Variables

346

Use a hierarchy of screens.

Re-use screens and components to reduce the number of source files.

Note: Project items can be imported from other Orbit projects.

Use components to capture commonly-used graphical arrangements.

Use higher-levels of a hierarchy to over-ride variable values at lower levels. This will help when
making changes to a project.

Use variables for flexibility.

Keep variables for different component instances in variables files.

Use clear and concise names when naming screens, components and variables.

Use a naming convention.

Use Orbit variables for more flexible screen designs and re-using components.

Variables in Orbit are powerful features. They can be defined at lower levels of a design and
then over-ridden at higher levels. They enable a (generic) screen to be re-used many times, for
example, for different RollCall addresses, multiviewer input numbers, Log Fields, or channels/
devices etc.

The scope of a variable is the component, or screen, on which it is declared. In the component/
screen hierarchy of a project, variable values can be set and over-ridden.

A Variable can be:
« Defined at run-time when the Orbit client application is run.
« Defined in a high-level screen.
- Defined on a low-level screen.
+ Defined on a Component.

Orbit MapView
User Manual

Variable File

Components

Custom Logic

Exercising

Run-time setting

Higher level screen/component

A higher-level variable value may

over-ride a lower level value
Lower level screen/component

Component level v

Widget level

Fig. A-1: Over-riding Variables

The determined variable value may be assigned to a Behaviour value or widget property.
Use the Variable File feature of Orbit to hold sets of variable values for Behaviours.

Use Orbit components for re-using graphical screen designs.

Use the Custom Logic feature of Orbit to encapsulate frequently-used functionality.

Exercise parts of the design using the Test button in the Behaviour and Bindings graphical
editor. This enter Run Mode and focuses on the selected widget. See Figure A-2.

347

Design Tips and Shortcuts
Design Tips

My Channel Monitor.schx €

a) In Design Mode:

Select a graphical item
(Line Segment is shown here)
to show its associated

Behaviour and Bindings"

27 =
| o

PLAYOUT CHANNEL RETURNS

Behaviours

Click Test button for
‘Test Mode’

ommand
RollCall+ Command
1P C

b) In Test Mode: Set

My Channel Monitor.schx €

Behaviour values and
widget Property values
are shown.

Transmission

Channel 1

Current clip: Title &
Tima Romaining: Tima
Nt Clip: Title B
e —
Cabie Return

CHANNEL RETURNS

PLAYOUT

Behaviours

=T

Fig. A-2: Exercise Parts of Designs:
a) In Design Mode Select Focus;
b) In Test Mode - Run-Time Behaviour Values Shown.

348

Orbit MapView
User Manual

Debug

The ‘logic’ behind the scenes of a set of Orbit MapView screens is defined with variables,
Behaviours and Bindings.

Incorporate some debug messages(e.g. Label widget) at key points in a project. When the
debug messaging is not needed, hide them using a variable and widget visibility property.

349

Design Tips and Shortcuts
Design Shortcuts

Design Shortcuts

Curly Bracket { } Syntax

Use the curly bracket syntax to add the value of an Orbit string or address variable into a
property value.
For example, into a Label widget caption.

{Address}

Hash Field # # Syntax

Use the hash field short-hand to add the value of a Log Field header from a RollCall address to a
property value. For example, to a Label widget caption.

#Address, LOG_HEADER#
See #Hash Field# Syntax, on page 164.

Angle Bracket < > Syntax

Use the angle bracket syntax to add the value of a Log Field header from a RollCall address to a
property textual value and to represent the Log Field alarm state via text font color. For
example, to a Label widget caption.

<Address, LOG_HEADER>
See <Angle-Bracket> Syntax, on page 166.

Copy a Device Address to Clipboard

1 Right-click on a device in the Network View.
2 Select ‘Copy Address.
The device's address (for example, 1000:B0:01) is copied to the clipboard.

Network View

User
RollCall
Virtual Node 000

o Details
00
& Monitoring ice D000:FFz00L Mask
Unit Info

| Copy Address |
Fig. A-3: Right-click in Network View, |Select ‘Copy Address’

Copy a Device Parameters

1 Open an Orbit MapView screen in Design Mode and open the ‘Behaviours and Bindings’
graphical editor.

For a Grass Valley Densité device, in the Network View:

2 Right-click on the Densité device and select ‘Display Card Parameters.
The device's Densité parameters are listed.

3 Select a parameter in the list, right-click on it, and select ‘Copy as Behaviour'.

Parameter information is copied to the clipboard.

350

Orbit MapView
User Manual

4 In the ‘Behaviours and Bindings’ graphical editor, click the ‘Paste’ button.
A Behaviour is automatically instantiated to bind to the (remote) device parameter value.

Copy a Device Log Field to Clipboard
1 Right-click on a device in the Network View.

2 Select ‘Details”
The device’s Details window is shown.

¥ Details 1000:80:01 - 1000:B0:01 Lo e Log Field item

Sortby - Filter: @ Header (O Value

Header Value
MY_LOG_HEADER (1)

IL-'ig. A-4: Details Window
3 Right-click on a Log Field item
and a select an option under the’Copy to Clipboard’ menu item:
- Header and Value - for example, MY_LOG_HEADER=WARN
« Header - for example, MY_LOG_HEADER
« Value - for example, WARN
The item is copied to the clipboard.

‘ Details 1000:B0:01 - 1000:80:01

Sort by = Filter: ® Header O Value

Header
MY_LOG_HEADER
STATE

Copy to clipboard » Header and value

Header

Value

Fig. A-5: Right-click in Details Window

Drag/Drop Device onto Tally Lamp Widget
1 Drag a device from the Network View and drop onto a Lamp widget.

The following is automatically done:
- An Alarm Behaviour is instantiated to monitor the device’s address.

« The Lamp widget's color and flashing are configured to be controlled from the Alarm
Behaviour using Property Bindings.

351

Design Tips and Shortcuts
Design Shortcuts

¥ My_C&M_Shortcuts =

File Edit Project View Tools Window RollCall iControl Control and Monitoring Help

(]
Project r Properti

Dime

Tally Lamp widget

Network View

c
RollCall
Virtual Node 0
Virtual Node 10
01: 1000:80:01 k. Behaviours

Local Timer
Local Value

Log Field
MV-Flex Control
Fing

Bindiry

Logged in: admin

Fig. A-6: Drag/Drop Device onto Lamp Widget

352

Orbit MapView
User Manual

Drag/Drop Device onto Label Widget
1 Drag a device from the Network View and drop onto a Label widget.
The following is automatically done:
+ An Alarm Behaviour is instantiated to monitor the device’s address.

+ The Label widget’s caption text color is configured to be controlled from the Alarm
Behaviour using a Property Binding.

For text alarms, the alarm text is shown on a caption.

B My_C&M_Shortcuts [==] =
File Edit Project View Tools Window RollCall Control and Monitoring iControl Help

¥

o Scale (62%) ~

Project 3 Drag-Ons.schx €3

Shortcuts

Width
Height
pect Ratio

configuration.prj

Network View

Disabled
Label
rtual Node 000 Alarm v True
Virtual Node 1000:B0: Alarm Mask
01: 1000: Audio Level
e Window
ed Caption
ommand Line

Virtual Node
Virtual Node
Virtual Ned
Virtual Node
@ MapView
@ Monitoring

Bindings

Logged in: admin

Fig. A-7: Drag/Drop Device onto Label Widget

353

Design Tips and Shortcuts
Shortcut Keystrokes

Shortcut Keystrokes

These shortcut keystrokes are available when editing screens or components (or walls or tiles)
in a schematic editor in Orbit:

Table A-1: Shortcut Keystrokes

Shortcut Keystroke Action

Ctrl + C Copy.

Ctrl + X Cut.

Ctrl+V Paste.

Ctrl+S Save.

Alt+B Toggles the Orbit Behaviours window when graphic-editing.

Alt+V Opens the Variables dialog

Ctrl + Alt+V Create a variable value for a selected property.

Alt + Enter Toggle full screen mode.

Ctrl + Alt + Enter Toggle design mode / run mode.

Ctrl + Mouse wheel Zooms in/out at the location of the mouse.

Mouse wheel Scrolls graphical schematic view up/down.

Shift + Mouse wheel Scrolls graphical schematic view left/right.

L + Drag Widget With a selected widget, this keystroke locks a widget into moving
either in a horizontal or in a vertical direction when moving it.

Shift + Space Bar Enters widget connection point mode.

Shift + drag widget into | Adds a widget to a group.

group

Alt + click on overlapped | Cycles selection through overlapping widgets. Allows widgets

widgets that beneath other widgets or widgets in a group to be selected.

Click widget in group Selects the whole group.

Alt + click widget in Select a widget inside a group.

group

Hold down left mouse Selection rectangular area.

button and drag.

354

B List of Behaviours and Bindings

List of Behaviours and Bindings

BINGINGS cvevvrvirrersrersisrississsisssisssessissssssssssssssssasses page 356
COMDBINE . . ettt e e e et e et e e page 356
CUSTOM o e e e e e e e e e page 356
DIrecCt . ..o e e page 356
EVeNt. o e page 356
LOGICA . ..o page 356
MAPPEA. e page 356
MALR. ..o page 356
Property.o e page 356
0 Lo o3 >V (o) ¢ I page 356
0] @ Y2 page 356
SEHNG OP. oo page 356

BERGVIOUIS oueorvereversirrinsisseisssisssisssassssssssssssssssssssssssssasses page 357
AlGIm . . e page 357
Alarm Acknowledgment..............uuuieuii i i page 357
AlGrm Mask e e page 357
AUIOLBVEL. e e e e et page 357
AUIOLOUANESS ..o e e e e e page 357
AUdIOPRGASE. . ..o e e e e e page 357
(@ [0 Y=R o Te (o page 357
(@ [0 X=Te K @] o] (o) s I page 357
ComMANA LINE.ot e e e e e page 357
= L (=2 page 357
Display Detailsuuuee ettt et page 357
EMQIL e e e page 357
GSMAIGIM . .o e e e et e e e page 357
GSMIMGSK. . ..o e e e e e e e et page 357
LR L I1=5 4 page 357
LiNK oo e page 357
Load Control SYStemoouueeui et page 357
oY I =T S page 357
LOCAIVAIUC. e e e e e e e page 357
LOCK. e e page 357
LOGFIeld e e e e e e e page 358
L 1= @Y 11 o page 358
PING. .o e page 358
RESEELALCN. ..ottt et e e e page 358
00 @ | =T page 358
RollCallv3Commandcoiuuieiie it i page 358
RolICall+ Command.oueiei i page 358
ROITIAK . . et e e e e e e e ettt ans page 358
SNMP GEL . ..ot e e e e e e e e page 358
SNIMP SEL. . oot e e e e e e e e e page 358
L2 2 .1 T=3 page 358
5 page 358
VidEO INPUL. e e e e ettt et page 358

355

List of Behaviours and Bindings

Bindings

Bindings

356

This appendix lists Orbit MapView Behaviours and Bindings for use in MapView applications:

Bindinas

Logical
Mapped
Math
Property
Rad to

String Op

Fig. B-1: Bindings List (in Behaviours and Bindings graphical editor)

Table B-1: List of Bindings

Binding Description

Combine Concatenate two or more Behaviour values into one value.

Custom Binding comprising other Bindings to form a user-defined, complex
Binding function.

Direct Binds a widget value to a Behaviour value.

Event Detect a user interface event (for example a button click) and performs an
action on a target Behaviour.

Logical Uses a logic operation on two or more input values to form one resultant
value.

Mapped Creates a mapping between two values.

Math Uses a mathematical operation on one or more input values to give a
resultant value.

Property Binds a Behaviour value indirectly to a selected widget display property.

Radio Button |Bindsa Radio Button widget directly to a Behaviour value.

RollCall v3 Binds a RollCall v3 Behaviour to a widget. This understands device menus.

String Op Performs a string operation on an input value.

Orbit MapView
User Manual

Behaviours

Behaviours

All -
Alarm

Alarm Acknowledgement
Alarm Mask

Audio Level

Audio Loudness
Audio Phasi
Window

mmand Line
Densite
Display Details
Em
GSM Alarm

Fig. B-2: Behaviours List (in Beha

Table B-2: List of Behaviours

Load Control Screen

Local Timer
Local Value

Lock
Log Field

MV-Flex Control

<at | atch
viours and Bindings graphical editor)

SMNMP Get
SMNMP Set
TRP Timer
TSL

Video Input

Behaviour

Description

Alarm

Connects to an Alarm state or remote Log Field.

Alarm Acknowledgment

Acknowledges an alarm or set of alarms.

Alarm Mask

Mask/Unmask Alarms on devices (units and log headers)

Audio Level

Subscribes to current audio levels.

Audio Loudness

Subscribes to current loudness values.

Audio Phase Subscribes to audio phase values.
Close Window Closes current schematic.
Closed Caption Closed Caption display Behaviour.

Command Line

Runs a separate process on the command line.

Densité Connects to the Grass Valley Densité REST API.

Display Details Displays the ‘Details’ window for a specific RollCall address.

Email Sends out emails via the Node back-end service.

GSM Alarm Connects to one or more GSM alarms.

GSM Mask Masks/Unmasks a GSM alarm.

GSM Text Connects to one or more GSM text alarms and the text
value(s).

Link Links to another Orbit project file (screen/panel)

Load Control System

Requests Orbit loads a control screen for an address.

Address can be fixed or passed as an argument.

Local Timer Creates a timer local to the screen.

Arguments: start, reset, stop, and pause.
Local Value Values can be stored, client-side, in a screen.
Lock Provides access to application screen Lock/Unlock

function.

Arguments: lock, and unlock.

357

List of Behaviours and Bindings
Behaviours

Table B-2: List of Behaviours (continued)

Behaviour Description

Log Field Connects to a remote Log Field value.

MV-Flex Control Controls MV-Flex multiviewer product range.

Ping Pings an IP address.

Reset Latch Resets the latched state of an alarm or set of alarms.

RollCall Timer Listens for RollCall timer updates.

RollCall v3 Command Connects to a remote RollCall command with RollCall v3
protocol.

RollCall+ Command Connects to a remote RollCall command with RollCall+
protocol.

RollTrak Sets or Gets a RollTrak with RollCall v3 protocol.

SNMP Get Polls an SNMP-capable device for an SNMP MIB OID
value(s).

SNMP Set Set an SNMP MIB OID value on a SNMP-capable device.

TRP Timer Listens for TRP timer updates.

TSL Listens for TSL message updates.

Video Input Connects to a video input of a device proving input status
etc.

358

C Troubleshooting

Troubleshooting
If any problem is encountered with Orbit, then please contact Grass Valley support.

Provide as much information as possible because this is key to problem resolution.

Grass Valley support engineering will use information provided to investigate the root cause of
the problem and a fix. They can also advise on any temporary workaround to continue
operations.

Information to Provide

Information should include:

« Problem description. A precise and accurate description of the problem.

+ Problem impact. Impact of the problem.

« Steps performed. The steps performed when the problem occurred.

« A concise list of steps which If a problem is reproducible with a concise set of steps,
reproduce the problem. then it is far, far easier to reproduce at Grass Valley and

hence investigate and resolve etc.

+ Any system changes. Provide details of any changes to a working system that
have been done. These may be relevant to the
introduction of the problem.

- Version number of Orbit. This can be found via Help > About
+ The Orbit project used. This may be zipped up, once Orbit is closed, and sent via
email attachment or via ftp.
+ Any Log Server CurStat file. Where applicable when Orbit services are used.
- In the case of an Orbit crash, File name orbit_xxxxx.dmp ;
supply a crash dump file. file size approximately 460MB.

+ Any other supporting
information.

359

Troubleshooting
Troubleshooting

Crash Dump Files

Known Issues

360

Orbit has built-in crash detection; if an internal error is detected, it is trapped by the program
and the current program state is stored in a crash dump file (*.dmp). This file can be used by
Grass Valley support engineering to facilitate problem investigation. When contacting Grass
Valley customer support, inform them of the version number of the Orbit being used (Help >
About).

The location of the crash dump files on your computer differs depending on whether it is the
Orbit application, or an Orbit service which crashes.

File name formatis Orbit_DD_MM-hh_mm.dmp
where
DD = day of the month; MM = month number; hh = hour (00 to 23); mm = minute
For example, Orbit_01_10-14_17.dmp

@'\J"

. v Computer » Local Disk (C:) » Users » UserMame » AppData » Local » Temp »

Organize ~ Include in library « Share with + Mew folder
% Favorites m MName Date mcc[ifiecl Type Size
Bl Desktop || Orbit_01_10-14_17.dmp 01/10/2018 14:17 DMP File 462,966 KB
& Downloads || Orbit_01_10-14_16.dmp 01/10/2018 14:16 DMP File 461,550 KB

15 Recent Places

4 Libraries
3 Documents

Fig. C-1:Crash Dump File Example

Application Dump File
These files can be found in sub-folder: C:\Users\UserName\AppData\Local\Temp

Orbit Services Dump File
These files can be found in sub-folder: C:\Windows\Temp
Files are named: OrbitNode_DD_MM-hh_mm.dmp

Black Screen when opening Orbit via remote desktop

This has been seen on a few occasions when running Orbit Client over a remote desktop or on
Windows Server 2008 where the correct OpenGL drivers are not in place.

Workaround:

Start Orbit using the Windows command script file ‘orbit remote desktop mode.cmd’ which is
found in the ‘c:\program files\sam\orbit’ installation folder.

Contact Us

Grass Valley Technical Support

For technical assistance, contact our international support center, at
1-800-547-8949 (US and Canada) or +1 530 478 4148.

To obtain a local phone number for the support center nearest you,
please consult the ‘Contact Us’ section of Grass Valley's website (www.grassvalley.com).

An on-line form for e-mail contact is also available from the website.

Corporate Head Office

Grass Valley
3499 Douglas-B.-Floreani
St-Laurent, Quebec H4S 2C6

Canada
Telephone: +15143331772
Fax: +1514 3339828

www.grassvalley.com

www.grassvalley.com/contact/

	Patent Information
	Copyright and Trademark Notice
	Terms and Conditions
	About this Manual
	Table of Contents
	1 Product Overview
	Order Codes
	Software Version
	This Document
	Content Summary
	Useful Bookmarks

	System Overview
	Orbit MapView Project
	Screen Hierarchy
	Screen Logic
	A Behaviour
	A Binding

	Orbit Services
	Orbit Monitoring Service
	MapView Service
	Routing Service
	Densité Control Service
	Email Service
	Recording Service

	Source Control
	Git
	Other Source Control Systems

	2 MapView Home Screen
	Initial Orbit Home Screen
	Orbit C&M Projects
	C&M Project Home Screen
	Main Menu Bar Items
	Project > Set as Home
	Tools > Options > Monitoring - Masking tab
	Tools > Options > MapView
	State Value 0 to 100
	iControl Menu Bar Item
	Control and Monitoring > Properties (Main Menu Bar Item)

	Network View
	Folders
	User Folder
	To Add (Create) a Sub-folder
	To Delete a Sub-folder
	To Rename a Sub-folder
	To Assign a RollCall Address to an Item
	To See Information about an Item
	To Add Devices to a Folder/Sub-folder
	To Remove an Item

	User Folder RollCall Address and iControl/Densité Devices

	Accessing Device Control Screens
	RollCall-Enabled Device Control Screen
	iControl/Densité Device Control Screen Panel
	Orbit Configuration
	Usage
	Additional Information

	Device Details
	Alarm Masking
	Tagged Masking
	To Mask a Device with a Tagged Mask via Network View
	To Unmask a Device via Network View

	iControl Alarms in Network View
	iControl Alarm States and State Value 0 to 100
	iControl Alarm Acknowledging

	Design, Test and Run
	Orbit Design Mode and Run Mode
	Designing
	Testing
	Running

	Users, Roles and Permission
	Custom Permissions
	Permission Widget Properties

	Themes
	Create a Theme
	Set as Current Theme

	3 Working with Widgets
	Widget Properties and Value
	Properties and the Property Binding
	Properties Box
	Property Binding and Direct Binding

	Value and the Direct Binding

	Using Behaviours and Bindings
	Stabilized Value
	Non-Stabilized Values

	Setting Up a Test Bench
	Pie Chart Widget
	Create a Test Bench Screen
	Calculate an Intermediate Data Value
	Bind ‘Widget Under Test’ to Stimulus Values
	Exercise the ‘Widget Under Test’ with Test Bench

	Extend Widget Functionality with Behaviours and Bindings
	Adding Extra Functionality
	Exercising the Extra Functionality

	Monitoring by Exception
	Monitoring by Exception (MbyE) Widget
	Configuration Dialog of the MbyE Widget
	Monitoring by Exception Example

	Auto-Fill Property Values
	Auto-Fill Example 1: Set a Single Property across Multiple Widgets
	To Re-label the Buttons using Auto-Fill
	Numeric Increments and Orientation

	Format Syntax of a String Value
	Auto-Fill Example 2: Set Multiple Variables on a Single Widget/Component

	Viewing Log Messages (Alarm List Widget)
	Introduction
	Alarm List Widget
	Using an Alarm List Widget in Orbit MapView
	Alarm List Widget Features
	Navigating the List
	Alarm List Widget History Depth
	Widget Columns
	Widget Controls
	Some Widget Properties

	4 Components and Variables
	The Component
	Creating a New Component
	Using a Component on a Screen

	Variables in Orbit
	Create a Variable
	Create a Variable from a Property Value
	View Variables/Set Variable Values
	Use a Variable in a Property Value
	Enter a Variable Directly into a String Value

	Placing Functionality Inside a Component
	Create New Component
	Connect Widget-Level Bindings to Component Variables
	Create Component-Level Variables
	Connect Widget-Level Bindings to Component-Level Behaviours
	Instantiate the Component on a Screen

	Exercise the Component

	Using Component Variables
	Linking Component Variables to Widget Property Values
	Setting Component Property Values at Screen-Level

	Component with Multiple Variables
	Creating New Component
	Creating Multiple Component Variables
	Linking Component Variables to Widget Properties
	Using a Component with Multiple Variables

	Binding to Component Behaviour Values
	Example - Controlling Component Visibility
	Create a Component
	Exercise the Component for a Valid RollCall Address
	Exercise the Component for an Invalid RollCall Address

	Using the Component on a Screen
	Create a Screen and Instantiate the Component
	Set Up Component Instance 1
	Bind to the Component’s Visibility Property
	Set Up RollCall Address Specifically for Component Instance

	Set up Component Instance 2
	Exercise the Screen

	5 Bindings
	Direct Binding
	Property Binding
	Event Binding
	Behaviour Arguments
	String Op Binding
	Math Binding
	Mapped Binding
	Logical Binding
	Combine Binding

	6 Behaviours
	Local Timer Behaviour
	Behaviour Arguments

	Alarm Behaviour
	Alarm Configuration Dialog
	To Enter a RollCall Address
	To Enter a Specific Log Field Header
	To Delete a Specific Unit Item
	To Delete a Specific Header Item

	Alarm Acknowledge Behaviour
	Alarm Mask Behaviour
	Reset Latch Behaviour
	Log Field Behaviour
	#Hash Field# Syntax
	Specifying Log Field Header
	Specifying RollCall Address
	Example

	<Angle-Bracket> Syntax

	GSM Behaviours
	GSM Alarm Behaviour
	GSM Text Behaviour
	GSM Mask Behaviour
	GSM Mask Behaviour Value

	SNMP Behaviours
	SNMP Get Behaviour
	SNMP Set Behaviour

	Link Behaviour
	Introduction
	State Information
	Schematic State

	Link State
	MapView Service and Link State

	Link Behaviour and Properties
	Create a Link Between Two Screens
	Link Behaviour Value

	Command Line Behaviour
	Arguments

	Lock Behaviour
	Arguments

	Ping Behaviour

	7 Examples with Bindings
	Example - Direct Binding with a Slider Widget
	Create Screen
	Exercise the Slider Example
	Add a Further Slider

	Example - Property Binding and Tally Lamp Widget
	Create Screen
	Exercise the Example

	Example - String Op Binding and Math Binding
	Step 1: Get Data from Device
	Step 2: Extract the Textual Information (String Op Binding)
	Step 3: Determine a Divisor (Mapped Binding)
	Step 4: Convert the Data Rate Value to Gbits/sec (Math Binding)
	Exercise the Example
	Test Stimulus
	Exercising

	Example - Logical Binding and Simulated GPI or Alarm State
	Build the Example
	Exercise the Logical Binding
	Controlling Border Color

	Example - Event Binding and ‘Taking’ a Slider Value
	Build the Example
	Exercise the Event Binding

	Example - Button Click Increments a Value by One
	Build the Example
	Exercise the Example

	Example - Forming a Text String for a Command Line Behaviour
	Build the Example
	Screen Background
	Command File for a Command Line Behaviour to Run
	Button Widget

	Adding some Debug
	Exercise the Example

	Binding Execution Order
	Bindings Controlling a Behaviour Value
	Determining Binding Execution Order
	Exercising the Example

	8 Examples with Behaviours
	Example - Read a Device’s Log Field
	Log Field Source Data
	Read a Log Field
	Exercise Log Field Reading

	Using the #Hash Field# Syntax
	Exercise Hash Field

	Example - Write to a Log Field
	Write to a Log Field
	Exercise Writing to Log Field

	Example - Linking from One Screen to Another
	Overall Screen Hierarchy and Home Screen
	Link Behaviour with Button Widget Example
	Exercise the Link to a Screen

	Drag-Drop Link Method

	Example - Screen Link States and Screen Re-Use with Variable Files
	Introduction
	Preliminaries
	Create the Project, a Top Level Screen and Set the Home Screen
	Build a Banner Component
	Build a Device Information Screen (Low-Level)
	Build Two Rack Screens (Mid-level)
	Rack A Screen
	Rack B Screen

	Build the Top Level Screen
	Screen Variables for Rack A Over-ridden at Link Behaviour
	Schematic Variables for Rack B Defined in a New Text File

	Restart Orbit MapView Service
	Quick Check of Orbit MapView Project
	Exercise the Example
	Run the Orbit MapView Project
	Error State Shown at Top Level
	Error State Shown at a Lower (Rack) Level
	Error State Shown at Lowest (Device) Level

	Renaming Virtual Nodes in Network View

	Example - ‘Control with Take’ for a Manual HCO Switch-Over
	Introduction
	Simple Manual Switch-over Case
	Advanced Switch-over

	Preliminaries
	Add Widgets
	Configure Orbit to Connect to an iControl Server
	Add a Behaviour to Control the HCO Device
	Add Behaviour with Network View Method

	Configure Radio Buttons
	Exercise the Radio Buttons

	Configure Pre-select for TAKE Button
	TAKE Button Visibility
	Exercise the TAKE Button Visibility
	Cancel TAKE Pre-Select after 5 Seconds
	Exercise the ‘Cancel Pre-Select’ Timeout

	Display the TAKE Timeout on the Button Face
	Exercise the Timeout Display on the Button Face
	Bindings and Behaviours on the Take Button

	9 Server-side Processing Examples
	Orbit Global Files for Server-Side Processing
	On Orbit MapView Screens (Client-Side Processing)
	Server-Side Processing with Orbit MapView Projects

	Example - Simple Global File for Server-Side Processing
	Orbit MapView Preliminaries
	Build the Globalx File
	Build a MapView Screen File
	Configure Orbit Services
	Orbit Monitoring Service
	MapView Service

	Exercise the Globalx Example

	Example - Monitoring by Exception
	Build the Lower-Level Screens
	Build Screen to Monitor One Device
	Build Screen to Monitor many Log Fields on One Device
	Build Screen to Monitor many Devices

	Top-Level Screen
	Add a Monitor by Exception Widget:
	Configure the Monitor by Exception Widget
	Modify the first line item:
	Modify the second line item:
	Modify the third line item:
	Modify the fourth line item:
	Modify the fifth line item:
	Further widget properties:

	Exercise the Example
	All MbyE Icons Shown
	Hiding Some MbyE Icons
	MbyE Icons Shown in State Order
	Exclude MbyE Icons from Screen Link State
	Show MbyE Icons Depending on Their State

	Example - Monitoring the Rate of Change of a Value
	Configuring the Orbit Monitoring Service
	Monitoring Rate of Change with MapView
	Build the Screen
	Exercising the Screen

	Example - ‘Network View’ User Folder and Virtual Alarms
	Prepare a User Folder
	Exercise the User Folder
	Masking Alarms from the Network View Pane
	Inverting Alarms
	Filtering Alarms
	Filtering at Folder Level

	10 Custom Logic
	Introduction to Custom Logic
	Custom Logic File
	Create Logic File
	Configure Custom Logic File Input(s) and an Output

	Example - Custom Text Processing (Trim Text, Convert to UPPERCASE)
	Preliminaries
	Build the Custom Logic File
	Using Custom Logic on a Screen
	Exercising the Custom Logic

	Example - Pass Variables to Custom Logic (Prefix a Text String)
	Prepare a Custom Logic File with Variables
	Using a Custom Logic File with Variables
	Exercise the Custom Logic File with Variables

	Other Custom Logic
	Custom Logic with No ‘Output’
	Custom Logic with No Input
	Custom Logic with No Inputs and No Output

	11 Channel Monitoring Example
	Introduction to Example MapView Project
	Screens
	Screens Hierarchy

	Top Level Screen
	Channel View Screen
	Animated Play-Out Chain
	Channel Monitor Points
	Change-Over Switch

	Engineering Information Screens
	Racks Screen
	Rack Devices Screen
	Device Status Information Screen

	Operation
	Top Level
	Channel View
	Normal Operation, All OK
	Channel Play-Out Failure

	A Design Tips and Shortcuts
	Design Tips
	Design Structure
	Manage Access Control
	Project Structure
	Naming
	Variables
	Variable File
	Components
	Custom Logic
	Exercising
	Debug

	Design Shortcuts
	Curly Bracket { } Syntax
	Hash Field # # Syntax
	Angle Bracket < > Syntax
	Copy a Device Address to Clipboard
	Copy a Device Parameters
	Copy a Device Log Field to Clipboard
	Drag/Drop Device onto Tally Lamp Widget
	Drag/Drop Device onto Label Widget

	Shortcut Keystrokes

	B List of Behaviours and Bindings
	Bindings
	Combine
	Custom
	Direct
	Event
	Logical
	Mapped
	Math
	Property
	Radio Button
	RollCall v3
	String Op

	Behaviours
	Alarm
	Alarm Acknowledgment
	Alarm Mask
	Audio Level
	Audio Loudness
	Audio Phase
	Close Window
	Closed Caption
	Command Line
	Densité
	Display Details
	Email
	GSM Alarm
	GSM Mask
	GSM Text
	Link
	Load Control System
	Local Timer
	Local Value
	Lock
	Log Field
	MV-Flex Control
	Ping
	Reset Latch
	RollCall Timer
	RollCall v3 Command
	RollCall+ Command
	RollTrak
	SNMP Get
	SNMP Set
	TRP Timer
	TSL
	Video Input

	C Troubleshooting
	Troubleshooting
	Information to Provide
	Crash Dump Files
	Application Dump File
	Orbit Services Dump File

	Known Issues
	Black Screen when opening Orbit via remote desktop

	Contact Us
	Grass Valley Technical Support
	Corporate Head Office

